Cell:精确到单细胞!瞄准两个神经元便能控制视觉行为

多年以来,人们试图通过对大脑不同区域进行电击来改善或治疗帕金森等运动障碍或抑郁症等神经障碍疾病。成千上万的神经疾病患者因此得以缓解病情。然而,这项治疗会牵扯到脑部大量未知的神经元。如果能够精确控制某几个控制疾病的神经元或将打开治疗神经性疾病的大门。 近日,哥伦比亚大学的神经科学家首次通过激活老鼠视觉皮层的几个神经元来控制老鼠的视觉行为。这项研究证明特定的神经元集合在行为中具有因果关系。该研究发表于Cell。DOI:htps://doi.org/10.1016/j.cell.2019.05.045 光学遗传技术“照亮”大脑神经元 研究人员使用了新的光学分析工具来识别小鼠在进行视觉观察时的大脑皮质整体。这种叫做“双光子成像”的光学遗传技术具有极高的分辨率,可以精确到单细胞并同时靶向选定的不同神经元来控制小鼠行为。 双光子成像技术是脑科学研究的热点前沿技术,可打造全景式脑连接图谱和功能动态图谱。它以更高的分辨率打破尺度的壁......阅读全文

Cell:首次发现“好斗”神经元

  加州理工Caltech的科学家们发现,雄性果蝇比雌性更具攻击性是因为其大脑具有特殊的好斗细胞,而雌性果蝇缺乏这类神经元。文章于一月十六日发表在Cell杂志上。   “我们发现的这种性别特异性细胞,通过释放特定的神经肽(或激素)产生影响。这种物质在包括小鼠和大鼠在内的哺乳动物中,也与攻击性密切相

Cell子刊:全能的神经元

  小而透明的秀丽隐杆线虫Caenorhabditis elegans只有302个神经元,长期被用于研究神经系统将感知转化为行动的机制。近日,哈佛大学的一项新研究发现,线虫简单神经系统中有种神经元具有惊人的复杂性。文章于十一月二十一日发表在Cell旗下的Neuron杂志上。   研究显示这种线

Cell子刊:神经元的引路人

  Emory大学医学院的研究人员发表了一项新研究,展示了纤毛在胚胎大脑中指导神经元迁移的动力学作用。纤毛是细胞表面微小的毛发状结构,但它们在这里的作用更像是天线。   研究人员在正在发育的小鼠胚胎中,观察到神经元迁移时纤毛的伸展和收缩。研究显示,纤毛是神经元接收信号来确定迁移方向和定位所必须的。

《Cell》封面故事:重要神经元分泌途径

来自加州大学旧金山分校,霍华德休斯医学院的研究人员通过遗传筛选发现了树突和轴突是如何形成截然不同构造的,这个问题是神经生物学的基本问题,但是之前科学家们了解的并不多。这一研究成果公布在《Cell》封面上。 原文检索:Cell, Vol 130, 717-729, 24 August 2007Gro

Cell子刊揭示新型神经元保护基因

  研究人员获得了一项重要的研究发现,或有一天能够阻遏一些神经退行性疾病。来自昆士兰大学脑研究所的科学家们,确定了一个基因可帮助抵抗成年自发性、渐进性神经变性。研究结果发表在《Cell Reports》杂志上。  Massimo Hilliard博士说,发现mec-17基因可引起轴突(神经纤维)变性

Cell子刊:能发现疾病的神经元

  群居生活存在一个重要的风险,那就是容易暴露在传染性病原体面前。为此,群居生物演化出了不同的策略。在啮齿类动物中,生病个体发出的特殊嗅觉信号,会诱导同类做出回避行为。日内瓦大学(UNIGE)的Ivan Rodriguez教授领导研究团队,揭开了这一现象背后的神经机制,这项研究发表在近日的Curre

Cell-Reports:研究追踪听觉通路的神经元活动

  我们都知道,感官知觉是非常灵活的,会根据行为和环境发生变化。当从主动感知声音到被动听到声音时,大脑中发生了什么呢?近日,发表在《Cell Reports》上的一项研究中,来自瑞士巴塞尔大学的研究人员通过追踪小鼠大脑中两种声音处理的神经元回答了这个问题。  巴塞尔大学生物医学系的研究团队对这一过程

Cell-Metabolism:-补充能量有助于神经元修复

  当脊髓受伤时,受损的神经纤维通常无法再生长,最终导致永久性功能丧失。此前已经有大量研究试图寻找促进损伤后轴突再生的方法。最近,在小鼠中进行的一项发表在《Cell Metabolism》杂志上的研究结果表明,这些受伤的脊髓神经内能量供应的增加可以帮助促进轴突再生并恢复某些运动功能。  文章作者,美

Cell-metabolism:中枢神经元激活脂肪调节糖脂平衡

  近日,国际学术期刊cell metabolism发表了美国科学家的一项最新研究进展。他们利用两种小鼠模型发现5羟色胺神经元对小鼠糖脂代谢具有重要调节作用,并且这种作用是通过调控具有产热功能的棕色脂肪和米色脂肪实现的。   许多研究已经证明棕色脂肪和米色脂肪具有产热功能,能够通过糖脂代谢过程将化学

Cell:大脑中到底有多少类型的神经元?

  几十年来,科学家们都在努力研究希望对大脑中的细胞类型进行深入的“普查”,如今刊登在Cell杂志上的一篇研究论文中,来自哥伦比亚大学的研究人员描述了一种新方法,其可以帮助科学家们系统性地鉴别单一类别的大脑细胞或者脊髓中的神经元细胞,随后研究者揭示了神经元运动形状回路架构背后的元件,同时也阐明了这种

Cell:科学家首次鉴别出“注意力”神经元

  最近,来自瑞典卡若琳斯卡学院的研究人员通过研究首次在小鼠大脑中鉴别出了对注意力非常关键的特殊细胞类型,而通过对这种细胞类型的活性进行操控就可以增强小鼠的注意力,相关研究刊登于国际杂志Cell杂志上,该研究为理解大脑的额叶结构的功能及其控制行为的机制提供了新的思路。  大脑的额皮质结构在认知功能上

Cell:神经元识别标签或帮助阐明机体大脑的神经回路

  人类的大脑是由神经元的复杂回路组成的,而神经元是一类可以通过电化学信号来传递信息的细胞,类似于电脑的网络一样,神经元回路必须以特殊的方式互相连接才能够正常发挥作用,但在人类大脑中数以亿万计的神经元如何进行连接呢?而且神经元如何同正确的细胞进行连接?长期以来科学家们不断搜寻可以标记细胞形成连接的标

两篇Cell子刊聚焦神经元中的RNA颗粒

  学习过程的实现,需要神经元连接的持续重构。LMU的研究团队在同期Cell Reports杂志上连发两篇文章,为学习过程背后的分子机制提供了新的线索。   在学习和记忆的过程中,大脑的神经连接不断重组。这两个过程都依赖于对突触(神经细胞间的功能性界面)的修饰,改变突触的形态、分子构成及其功能

Cell子刊:治疗AD,或许还是要从逆转神经元衰老入手!

  岁月是把杀猪刀,曾经人们以为这把刀只会刺向增殖细胞,而不会向不再分裂的终末分化细胞出手。  作为一种终末分化的不分裂的细胞,神经元真的不会衰老吗?既往有研究发现阿尔茨海默病(AD)患者的神经元表现出一些类似衰老的表型,但是并未引起重视[1,2]。  近些年的研究发现,即使是未分化的细胞,也存在细

Cell:神经元新型作用机制-有望开发免疫性疾病新疗法

  拉斯穆森脑炎(Rasmussen's encephalitis)是一种罕见的自身免疫疾病,该病主要影响儿童,最终会导致癫痫症发作,由于这种疾病对药物疗法具有耐受性,因此患者需要经常进行外科手术来移除或切断受影响的大脑组织。图片来源:Doron Merkler/UNIGE  近日,一项刊登

Cell-Metab:科学家发现调节能量平衡的新神经元

  众所周知,体重的增长是由于饮食摄入与能量消耗之间的失衡所导致,大量研究也已证明神经系统在调节能量平衡方面发挥着重要作用。近日,来自美国的科学家又对这一问题进行了更进一步的探讨,相关研究结果在线发表在国际学术期刊Cell Metabolism上。  领导这项研究的Baoji xu教授说道:“我们在

Cell:你的运动仅仅只受这一束神经元控制

  运动是动物生存所必需的一种复杂行为。脊椎动物的运动依赖于被称为中枢模式发生器(CPG)的脊柱间神经元,其产生的活动负责屈肌和伸肌以及身体左右两侧的交替。目前,尚不清楚是多种还是单一的神经元类型负责控制哺乳动物的运动。美国哥伦比亚大学研究团队揭示,腹侧脊髓小脑束神经元(VSCT)对哺乳动物运动的控

Cell-Rep:一步法让干细胞变成神经元

  本文亮点:  该研究找到了将人类多能干细胞(hPSC)直接诱导为GABA能神经元(iGN)的遗传因子  iGN表达端脑中间神经元标记物和亚型标记物SST  iGN能够在体外实现功能上的成熟,释放GABA,并在体外形成突触网络  iGN可以在体内整合到宿主的突触回路中  近日,来自新加坡国立大学的

Cell:成功绘制出小鼠大脑中1000个神经元的连接图谱

  在一项新的研究中,来自美国霍华德休斯医学研究所珍妮亚研究中心的研究人员仔细地解开了1000多个纠缠在一起的神经元,追踪了每个细胞在大脑中的分支路径,以确定它的去向和与哪些细胞连接在一起。他们报道,如果端对端放置的话,这些神经元将伸展80多米,大约相当于两辆校车的长度。相关研究结果近期发表在Cel

有悖直觉!Cell子刊:昼夜节律紊乱竟能保护神经元?

  不管是出国旅行还是出差,人们的身体对于时差总归是有诸多不适,但是你的大脑可能会感谢它。  在一项新的研究中,西北大学的研究人员在亨廷顿病果蝇模型中诱导时差反应,发现时差反应保护了果蝇的神经元。随后,研究小组发现并测试了一种生物钟控制的基因,该基因在被击倒时也能保护大脑免受疾病的侵害。  这些发现

Cell-Rep:细胞自主性调节皮层神经元极化的新机理

神经元(神经细胞)是神经系统的基本结构和功能单元。它们通常具有多根短而粗的树突以及一根长而细的轴突分别用于接收和输出生物信号。因此,神经元不论在形态还是功能上都是高度极性化的。神经元发育异常会导致精神或运动性疾病。树突-轴突极性的建立过程被称为神经元的极化。在小鼠胚胎大脑皮层发育的中晚期阶段,绝大多

Cell:精确到单细胞!瞄准两个神经元便能控制视觉行为

  多年以来,人们试图通过对大脑不同区域进行电击来改善或治疗帕金森等运动障碍或抑郁症等神经障碍疾病。成千上万的神经疾病患者因此得以缓解病情。然而,这项治疗会牵扯到脑部大量未知的神经元。如果能够精确控制某几个控制疾病的神经元或将打开治疗神经性疾病的大门。  近日,哥伦比亚大学的神经科学家首次通过激活老

Cell-Res:神经元突触囊泡转运的分子调控新机制

  近日,中国科学院上海生命科学研究院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室熊志奇研究组,在小脑和运动障碍研究领域取得进展。相关研究成果以《PRRT2缺失造成小脑内的突触传递异常介导阵发性运动诱发性运动障碍》为题,在线发表在Cell Research上。研究人员系统地从

Cell:科学家绘制出神经元细胞表面所有蛋白全景图谱

  近日,一项刊登在国际杂志Cell上的研究报告中,来自霍华德-休斯医学研究所等机构的科学家们通过研究开发了一种新方法来重点研究特殊细胞表面覆盖的蛋白质,相关研究结果或能帮助阐明机体发育过程中脑细胞如何形成精细化的网络。这就好比是撒了一张小网,如今研究者就能利用这种新技术将果蝇大脑中神经元表面的所有

Cell发布重大项目成果:特殊大脑状态的神经元基础

  美国国家卫生研究院拨款1亿6900万美元实施了名为“BRAIN Initiative(应用先进革新神经技术推进大脑研究倡议,简称BRAIN计划)”的项目,今年这一项目加大了力度,重点开发了解神经回路功能、捕捉大脑动态活动的新工具和新技术。  来自哥伦比亚大学,NIH国家心理健康研究所(NIMH)

Cell:中间神经元迁移调节异常可能导致大头畸形

  在一项新的研究中,来自比利时列日大学的研究人员发现迁移的抑制性中间神经元(inhibitory interneuron)与产生兴奋性神经元(excitatory neuron)的干细胞之间进行交谈。他们发现这种细胞对话控制着大脑皮层的生长,并且破坏这种对话会导致之前已发现的与小鼠自闭症存在关联的

《Cell》针锋相对《Nature》:13岁后-人脑仍能生产大量新神经元

  海马是大脑中主要负责记忆形成的区域。3月7日来自加州大学旧金山研究所的研究人员在《Nature》发表题为“Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults”重要研究成

Cell子刊:北大用自创双光子成像技术发现神经元的奥秘

  北京大学生命科学学院及麦戈文脑科学研究所的研究人员发表了题为“Complex Pattern Selectivity in Macaque Primary Visual Cortex Revealed by Large-Scale Two-Photon Imaging”的文章,利用这一课题组最新

Cell:中间神经元迁移调节异常可能导致大头畸形

  在一项新的研究中,来自比利时列日大学的研究人员发现迁移的抑制性中间神经元(inhibitory interneuron)与产生兴奋性神经元(excitatory neuron)的干细胞之间进行交谈。他们发现这种细胞对话控制着大脑皮层的生长,并且破坏这种对话会导致之前已发现的与小鼠自闭症存在关联的

Cell-Metabol:星形细胞和神经元细胞间或存在乳酸盐的交换

  神经细胞可以利用葡萄糖和乳酸盐来满足其高能量的需求,近日,苏黎世大学的科学家发现了新的证据,他们首次在完整的小鼠大脑中找到证据证实了不同大脑细胞间存在乳酸盐的交换,而这一研究证实了一个20多年的科学家假设。  相比其它器官而言,人类大脑具有最高的能量需求,而神经细胞的能量供给以及乳酸盐的特殊角色