活体GFP绿色荧光成像系统

系统提供动物活体绿色荧光蛋白的实时观察与成像等一系列的荧光检测。能够应用在像深度肿瘤,大动物等活体肿瘤追踪观察成像研究。 该设备是一个高灵敏度的图像成像工作系统,主要利用特定波长的激光进行激发后,通过高灵敏度的致冷CCD进行实时检测后,获得所需的各类 特性的图像,有利于进一步的分析作用 。 采用高灵敏度CCD成像系统, 通过长时间积分功能,可拍摄人的肉眼不可见荧光信号,实现成像。 Imaged using a Zoom Lens with 515nm viewing filter and Macro-ImagerCamera, 470nm excitation using the Illumatool TLS LT-9500 same mouse......阅读全文

肿瘤细胞的标记及活体荧光成像

摘要 以绿色荧光蛋白( GFP) 作为标记基因转入人类肺癌细胞系(ASTC2a21) , 经800 mg/ L G418 筛选, 获得5 株高表达细胞系. 利用流式细胞仪对GFP 表达的稳定性进行了初步研究, 结果表明本实验中有些细胞株间GFP 表达稳定性有显著差异( P < 0101) . 将稳定

活体多光谱荧光成像应用实例(一)

前言传统的活体光学荧光成像(FLI)采用一个激发滤光片和一个发射滤光片。这对于区分靶向信号、可能存在的报告基因信号以及自体荧光组织信号而言有着诸多局限。多光谱(MS)FLI 采用多个激发滤光片和单个发射滤光片,或单个激发滤光片搭配多个发射滤光片,可以产生独特的荧光区域或材料的光谱曲线。(1)因此,图

活体多光谱荧光成像应用实例(三)

总结活体多光谱荧光成像可以扣除组织自体荧光和进行多种荧光团成像。这可以增强信噪比并进行先进的多重荧光成像,实现更强大的研究设计。参考文献[1] Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV (2008). Multiplexing

多模式活体成像系统技术指标

  生物发光和荧光三维成像;CCD检测器像素:≥1024X1024;分辨率:50微米;激发滤光片:10张及以上,包括20nm窄带宽或35nm宽带宽;内置X光模块,X光成像与荧光或发光成像能够叠加,并形成三维成像或深度信息;放置动物的托盘尺寸≥20cmX20cm,保证该范围均可检测到发光。

Kodak多模式活体成像系统连续中标

  Kodak多模式活体成像系统,集多种成像模式于一身,性能卓越,受到了国内越来越多活体研究用户的青睐,近日又连续中标两台。   1)吉林大学生科院:设有分子生物学系、生物药学系、生物大分子研究室、考古DNA实验室、Edmond H.Fischer细胞信号传导实验室等单位及校直属科研单位分子酶学教

小动物活体成像系统怎么选择

小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放

小动物活体成像系统怎么选择

小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放

活体生物发光成像系统CCD选择指南

近年来兴起的活体生物发光成像技术随着背部薄化、背照射冷CCD技术的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体生物发光技术具有更高的灵敏度,可以方便的应用到肿瘤学、基因表达和药物开发等各方面。从市场分析的角度,xenogen公司首先利用了先进的CCD技术来检测

活体生物发光成像系统CCD选择指南

近年来兴起的活体生物发光成像技术随着背部薄化、背照射冷CCD技术的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体生物发光技术具有更高的灵敏度,可以方便的应用到肿瘤学、基因表达和药物开发等各方面。从市场分析的角度,xenogen公司首先利用了先进的CCD技术来检测

动物活体成像系统的技术指标

  动物活体成像系统是一种用于化学、生物学领域的医学科研仪器,于2016年01月25日启用。  技术指标  采用背照射、背部薄化科学一级CCD;CCD采用电制冷方式,工作温度达到绝对-90℃,温度可视化;CCD尺寸不小于1.3 x 1.3 cm;CCD有效像素数量不少于1024 x 1024;CCD

绿色荧光蛋白(GFP)在科学研究上的应用

绿色荧光蛋白(greenfluorescentprotein,简称GFP)bs-2194P是一种能在蓝色波长光线激发下发出荧光的特殊蛋白质,正是这种神奇的性质,让它成为当今生物化学领域最有力的工具之一,被称为“生物北斗”。GFP在科学研究上有着惊人的用途,因为它能够使我们直接看到细胞内部的运动、分布

高校实验室如何去观察绿色荧光蛋白GFP?

绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,当受到紫外或蓝光激发时,发射绿色荧光。其特点在于:它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的来源于水母的氨基酸残基组成。水母的绿色荧光蛋白很稳定,无种属限制,已在多种动植物细胞中表达成功并产生荧光。GFP 的荧

活体成像自发光荧光太强了,怎么屏蔽

不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。

活体成像自发光荧光太强了,怎么屏蔽

不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。

活体成像自发光荧光太强了,怎么屏蔽

不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。

光纤式在体荧光显微成像系统在动态观测活体动物脑内...

光纤式在体荧光显微成像系统在动态观测活体动物脑内神经元中的应用中国上海复旦大学脑科学研究院、医学神经生物学国家重点实验室的石 莹,陈露岚,姜 民等人在生理学报 Acta Physiologica Sinica, December 25, 2012, 64(6): 695–699 发表文章对建立大鼠脑

活体成像概述

一、引子  自从Roentgen发现了X光的用途,动物活体成像就走进了科学家的视野。活体成像有很多种模式,除了X光的离子辐射成像,还有声音、磁铁甚至光光成像。每种都有缺点和优点,举例来说,要确定解剖结构的位置和形状,CT扫描、MRI、超声波可能是较好的选择,但涉及到肿瘤细胞的注射位置、表达层面,他们

荧光素酶报告基因与绿色荧光蛋白(GFP)有什么区别

只能先就标题的问题谈谈我的认识。后面的追问我了解得也不全面。1。两者的结果检测方法不同。gfp绿色荧光蛋白,很直观,能够直接检到荧光,在普通的细胞培养条件下都能够观察到,对细胞的生命活动和其他并行的实验安排影响很小。荧光素酶报告基因使用起来比gfp多一个步骤,因为荧光素酶是个酶,不发荧光,发荧光的是

荧光素酶报告基因与绿色荧光蛋白(GFP)有什么区别

1。两者的结果检测方法不同。gfp绿色荧光蛋白,很直观,能够直接检到荧光,在普通的细胞培养条件下都能够观察到,对细胞的生命活动和其他并行的实验安排影响很小。荧光素酶报告基因使用起来比gfp多一个步骤,因为荧光素酶是个酶,不发荧光,发荧光的是它的底物,荧光素。荧光素在细胞里(要说萤火虫细胞我就不知道了

血管微循环活体成像系统的优势简介

  ◆高分辨率:达微米级,具有1-3mm穿透深度,可进行活体的三维组织成像;  ◆无标记:无需造影剂的三维高分辨率微血管成像,可监测多种血管相关疾病模型的病理改变;  ◆速度快:可实现达350fps的快速断层扫描;  ◆应用广泛:可对多种组织及器官进行微血管成像如脑组织,皮肤,骨(颅骨,股骨髁,周围

多模式活体成像系统主要功能

  用于标记生物分子或病原体后、成像观察标记物在活体实验小动物体内的分布与代谢等研究。

活体成像技术在血液系统中的应用

光学活体成像技术主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。可见光体内成像通过对同一组实验对象在不

活体动物体内生物发光和荧光成像技术基础原理与应用四

二、活体动物荧光成像技术 (一)技术原理1.标记原理活体荧光成像技术主要有三种标记方法。(1)荧光蛋白标记:荧光蛋白适用于标记细胞、病毒、基因等,通常使用的是GFP、EGFP、RFP(DsRed)等;(2)荧光染料标记:荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以

阿霉素的荧光能直接用于活体成像吗

阿霉素的荧光能直接用于活体成像活体荧光成像一般有三种标记方法:荧光蛋白标记、荧光染料标记以及量子点标记。荧光蛋白适用于标记肿瘤细胞、病毒、基因等。通常使用GFP/EGFP/RFP等。荧光染料常用Cy3,Cy5以及Cy7。可以标记抗体、多肽、小分子药物。量子点标记是一种新的标记方法,

GFP抗体—绿色荧光蛋白的单克隆和多克隆标签抗体

GFP(Green Fluorescent Protein,绿色萤光蛋白)是由下村脩等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。GFP标签可位于蛋白质的C端或N端,该系统已广泛 应用于各种细胞

活体成像技术应用

  动物模型已经成为癌症,动脉粥样硬化,神经系统疾病(如阿尔茨海默氏病)和传染病研究中不可或缺的手段,而在这个过程中,很多情况下下需要使用到活体成像技术。原因是活体城乡技术可用于研究观测特异性细胞、基因和分子的表达或者相互作用关系,追踪靶细胞,药物,从分子和细胞水平对药物疗效进行成像,从病理水平评估

荧光探针研究获进展-实现单一波长激发双色荧光成像

  近日,中国科学院深圳先进技术研究院副研究员储军主持研发的新型大斯托克斯位移荧光蛋白取得突破,实现了在小鼠脑内单一波长激发双色荧光成像和高灵敏的生物发光成像。该工作以A bright cyan-excitable orange fluorescent protein facilitatesdual

化学发光荧光成像系统

  化学发光荧光成像系统是一种用于生物学、基础医学、临床医学、药学领域的分析仪器,于2017年6月27日启用。  技术指标  1.检测模式:荧光成像、数字化和化学发光成像; 2.激光波长:LD488、SHG532、LD635; 3.成像面积:40×46cm; 4.像素:10、25、50、100、20

活体成像中荧光色素标记细胞的方法

实验概要本实验以研究干细胞活体移植后的存活率为例,简介了一两种内源性荧光色素标记的实验方法。实验原理活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Lucifer

GFP:荧光蛋白的起源

  绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。   1962年,下村脩和约翰逊在一