合肥研究院研制出超高时空分辨率汤姆逊散射诊断系统

近日,中国科学院合肥物质科学研究院等离子体物理研究所诊断组承担研制的超高时空分辨率汤姆逊散射诊断系统顺利通过专家验收。该诊断系统可分别在4kHz YAG激光超高频模式(10个脉冲)和100Hz YAG激光连续模式下实现等离子体电子温度、密度全空间同步测量。目前,该诊断系统是国际上由单台激光器实现的频率最高的汤姆逊散射诊断。 电子温度、密度分布是聚变装置重要的基本参数,也是很多聚变物理问题研究的基础。激光汤姆逊散射诊断通过电子在激光作用下的散射谱形状和强度获得电子温度、密度实验数据。由于其原理清晰,被国际公认为是聚变研究中最可靠的电子温度、密度分布诊断手段,是包括ITER在内国际各聚变装置优先发展的诊断手段。由于汤姆逊散射诊断需要在纳秒级时间内分析激光与电子产生的光子量级的散射谱,此系统对于激光器、弱快信号探测技术提出了极高的要求,被聚变研究中认为是最难的几个诊断之一,此前只有少数几个发达国家具有完整的研制能力。 对于以高......阅读全文

合肥研究院研制出超高时空分辨率汤姆逊散射诊断系统

  近日,中国科学院合肥物质科学研究院等离子体物理研究所诊断组承担研制的超高时空分辨率汤姆逊散射诊断系统顺利通过专家验收。该诊断系统可分别在4kHz YAG激光超高频模式(10个脉冲)和100Hz YAG激光连续模式下实现等离子体电子温度、密度全空间同步测量。目前,该诊断系统是国际上由单台激光器实现

汤姆逊散射研究获突破

  上海交通大学特别研究员陈民等与美国内布拉斯加林肯大学研究人员合作,日前在高阶全光非线性汤姆逊散射的实验和理论研究中获重要突破,首次实验观察到高达500个光子同时与单电子的汤姆逊散射现象,得到能量超过20 MeV的伽马光子辐射。相关研究在线发表于《自然—光子学》。  光子与电子的弹性散射被称为汤姆

等离子体所高分辨率汤姆逊散射诊断系统取得阶段性成果

  近日,中科院合肥物质科学研究院等离子体所建成的高分辨率汤姆逊散射(TVTS)诊断系统已经获得有效信号。经过最近两周的实验验证和调试分析,该诊断系统目前已基本可以提供等离子体心部附近温度数据。此阶段性成果是在研究所和研究室领导长期大力支持下,经过十多年数届师生的积累,通过汤姆逊组成

高速高精度激光汤姆逊散射仪制成

  近日,中国科学院空天信息研究院、中国科学技术大学等联合研制出高速高精度激光汤姆逊散射仪。  2019年5月,该研究团队在“科大一环”磁约束聚变等离子体装置开展实验,基于重复频率200赫兹、单脉冲能量5焦耳的激光脉冲,实现小于5电子伏特的电子温度测量精度,电子温度安全预警时间间隔达5毫秒,所获得的

等离子体所建成EAST芯部25道汤姆逊散射诊断系统

  日前,中科院合肥物质科学研究院等离子体所汤姆逊散射研究小组成功建成了EAST芯部25道汤姆逊散射诊断系统。经过一年多的调试运行,该套系统目前已基本可以提供等离子体电子温度分布结果。   汤姆逊散射诊断系统可以给出等离子体电子温度和密度的空间分布,是国际公认的最为准确的测量电子温度

中科院等离子体所建成EAST芯部25道汤姆逊散射诊断系统

  日前,中科院等离子体所汤姆逊散射研究小组建成了EAST芯部25道汤姆逊散射诊断系统。这套汤姆逊散射诊断系统拥有25个测量点,能可靠测量EAST芯部等离子体电子温度和密度分布,精度已达国际同类诊断系统水平。它将为EAST托卡马克物理研究、运行及其他诊断的标定提供可靠手段。经过一年多的调试

单细胞测序技术如何提升时空分辨率?

单细胞测序技术可以通过以下几种方法来提升时空分辨率:改进样本处理和标记技术开发更精细的组织切片和细胞捕获方法,例如使用激光捕获显微切割(LCM)技术精确获取特定区域的细胞。采用新型的荧光标记或同位素标记策略,对细胞进行时空特异性标记。结合空间转录组学技术如使用空间条形码(Spatial Barcod

LIGHTNING超高分辨率应用实例

随着光学技术的日益普及,越来越多的研究者将其应用到了与人类健康密切相关的领域,但传统的共聚焦成像已经不能满足需求,科学家们希望在更精细的维度深入探索人类疾病的发展进程,了解病原体和宿主的相互作用,以及追踪长时间的生物学过程。 LIGHTNING 显著提升共聚焦分辨率和信噪比?今天给大家分享的是非常适

时空分辨率的对单细胞测序技术的影响

时空分辨率的提升对于单细胞测序技术的发展具有以下重要意义:更精确的细胞图谱绘制能够细致地描绘细胞在组织和器官中的分布模式,构建更精确和全面的细胞图谱,从而更深入地理解组织和器官的组成与结构。揭示细胞发育的动态过程清晰地展现细胞在发育过程中的基因表达变化顺序和时间节点,帮助研究者了解细胞如何从干细胞逐

我国首个高时空分辨率碳同化反演系统发布

  记者从中国科学院地理科学与资源研究所获悉,我国首个高时空分辨率碳同化反演系统——中科院碳追踪同化系统(CarbonTracker-China,CAS)于日前发布。依据该软件系统,可以通过大气二氧化碳浓度的观测数据来估算陆地生态系统碳源碳汇的分布信息。  2007年,美国国家海洋与大气局正式发布了

超高分辨率显微技术发展

超高分辨率显微技术发展只有十多年时间,已经在细胞生物学、免疫学、神经生物学、微生物学及交叉学科等多个领域获得重要应用,并于2014年获得诺贝尔化学奖。分析测试共享中心购置的徕卡TCS SP8 STED 3X纳米显微平台是超高分辨显微技术中高端产品的杰出代表,在成像分辨率、成像速度、深度及多色光谱式成

天文光子学团队实现超高分辨率超高定标精度光谱新成果

  近期,中国科学院国家天文台南京天文光学技术研究所天文光子学团队在超高分辨超高定标精度光谱技术研究中取得进展。研究团队将虚拟成像相位阵列(Virtually Imaged Phased Array,VIPA)作为主色散元件,以激光频率梳作为波长定标源,在实验上获得的光谱分辨率为106万(~0.6皮

超高分辨率显微镜的原理

  冷场发射扫描电子显微镜m213451是专门为现今技术研究和发展设计的超高分辨率仪器。独特之处在于使用复合检测器允许同时显示二次电子和背散射电子成像。可以以三维立体形态观察各种物质的原子或分子结构,具有比一般扫描或电子显微镜更卓越的性能。  m213451在半导体设备和过程评估上也很有用,这种超高

Science:低成本的超高分辨率成像

  显微镜一直是生物学研究中的重要工具,随着技术的发展显微镜的分辨率在不断提高。最新的超高分辨率显微镜已经达到了超越衍射极限的分辨率。现在MIT的研究团队通过另一种巧妙的方式达到了同样的目的。  研究人员并没有在显微镜上下功夫,而是从组织样本下手,利用一种吸水膨胀的聚合物将组织样本整体放大。这种方法

超高分辨率显微成像系统的简介

  超高分辨率显微成像系统是一种用于临床医学领域的分析仪器,于2018年11月29日启用。  1技术指标  1、研究型全自动正置荧光显微镜,调焦、聚光镜、物镜转换、光阑控制、荧光滤块转换、荧光光闸控制等全部电动,状态自动跟踪。 2、六个物镜:能电动转换,进行扫描。 3、装载数量:不少于8片,实现无人

超高分辨直接观测基因表达的染色质时空调控

  生命科学的一个基本问题是在个体发育中,单个细胞如何分化成各种类型的组织细胞。这个过程高度依赖于基因表达的精确时空调控,而这种细胞特异基因表达与染色质的调控密切相关。比如,不同的顺式调控原件增强子能够在不同细胞中选择性地激活目标基因。每个基因经常由分布在千碱基(kb)甚至兆碱基(Mb)以外的多个增

时空分辨率提升对单细胞测序技术的发展的意义

时空分辨率的提升对单细胞测序技术的发展具有极其重要的意义,主要体现在以下几个方面:更精准的细胞发育和分化研究能够清晰地追踪细胞在发育过程中的连续变化,包括基因表达的动态调整以及细胞状态的转变,从而更准确地理解细胞命运决定的机制。深入理解组织形成和器官发生揭示细胞在空间位置上的排列规律以及它们之间的相

长时间序列高时空分辨率城市景观动态遥感监测实现

  占全球约3%的城市地表供养了55%的人类生活,复杂高强度的人类活动使城市景观剧烈变化,但当前学术界缺少长时间连续序列-高时空分辨率城市景观动态数据,导致城市景观演变的驱动机制及其产生的生态效应尚不明确,这制约了城市居民福祉提升和城市可持续发展。  中国科学院东北地理与农业生态研究所城市森林与湿地

610万,河南高校采购超高分辨率质谱仪

  项目概况  河南师范大学2024年化院“双一流”创建学科超高分辨率质谱仪采购项目招标项目的潜在投标人应在登录河南省公共资源交易中心(http://www.hnggzy.net/)获取招标文件,并于2024年05月07日09时00分(北京时间)前递交投标文件。  一、项目基本情况  1、项目编号:

纳观生物超高分辨率显微成像原理

,黑色箭头表示的物体 AB 经过物镜等之后在相机上成像。由于光的衍射,物体上的点如 A、B,在相机上并不是单独的点,而是一个个有一定大小的斑,被称为夫琅禾费衍射斑,如右侧的同心圆所示。根据光学中的瑞利判据,1873 年,德国物理学家恩斯特·阿贝(Ernst Abbe)推算出,显微镜能分辨的物体上两点

MolecularDevices发布超高分辨率图像处理系统

  Molecular Devices公司近日发布了MetaMorph®超高分辨率系统(MetaMorph® Super-Resolution System),实现了同步的图像获取和处理,为固定细胞和活细胞中小于250 nm的目标提供了细节。新系统特有实时的图像处理和GPU加速硬件,扩展了光

超高时空分辨蛋白质机器动态成像项目获科技部资助

  由中国科学院长春应用化学研究所牵头承担的国家重点研发计划“蛋白质机器与生命过程调控”重点专项“超高时空分辨蛋白质机器动态成像”项目近日获得科技部资助,立项经费为3247万元。  “蛋白质机器与生命过程调控”重点专项的目标是针对“重大生命过程中蛋白质机器动态组装与功能调控的分子机制”这一核心科学问

“超高时空分辨微型化双光子在体显微成像系统”获进展

  在国家自然科学基金国家重大科研仪器研制专项“超高时空分辨微型化双光子在体显微成像系统”(项目编号:31327901)的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速高分辨

我国首个高时空分辨率碳同化反演系统于日前发布

  记者从中国科学院地理科学与资源研究所获悉,我国首个高时空分辨率碳同化反演系统——中科院碳追踪同化系统(CarbonTracker-China,CAS)于日前发布。依据该软件系统,可以通过大气二氧化碳浓度的观测数据来估算陆地生态系统碳源碳汇的分布信息。  2007年,美国国家海洋与大气局正式发布了

超高分辨率显微技术的又一突破:分辨率提高四倍

  几个世纪以来,光学显微镜的“衍射极限”一直被认为是无法超越的。近年来,科学家们从不同途径“突破”了这一极限,使人们能够分辨相距少于200nm的两个物体。这种超高分辨率显微技术也因此获得了2014年诺贝尔化学奖。  美国西北大学的研究团队最近在Nature Communications杂志上发布了

京津冀高时空分辨率碳排放监测及应用示范项目启动

  2017年10月17日,“地球观测与导航”重点专项“京津冀城市群高时空分辨率碳排放监测及应用示范”项目启动会在北京召开。该项目由中科院大气物理研究所牵头组织实施,参加单位包括国家卫星气象中心、中国气象局气象探测中心、中国计量科学研究院、国家发展和改革委员会能源研究所等16家科研单位。   中国科

超高分辨率条纹相机可看清皮秒级变化

  研究生物细胞内大分子浓度随时间变化的规律需要用到特殊的相机。以前这种国产相机的时间分辨率为几百皮秒到几千皮秒(1皮秒等于1万亿分之一秒)。但对于研究对象来说,这样的瞬间还是太长。一种国产的新型高性能条纹相机,时间分辨率达到皮秒级,则能把这一过程清晰记录下来。22日,由中科院西安光机所研制的这种高

超高分辨率海洋模式入选E级超算系统

  12月8日,国家超级计算天津中心和国防科技大学联合中国科学院大气物理研究所等数十家合作团队共同发布“面向新一代国产E级超级计算系统的十大应用挑战”。此次“十大应用挑战”的发布是为了充分发挥国产新一代百亿亿次(E级)高性能计算机强大计算能力,支撑解决世界科技前沿、经济主战场、国家重大需求、人民生命

BioTechniques:超高分辨率显微镜的新进展

  近年来,超高分辨率显微镜(super-resolution microscopy)因进展迅速而频频登上头条。它突破了Ernst Abbe的衍射极限,让显微镜从此步入了纳米时代。在最新一期的《BioTechniques》杂志上,Abigail Sawyer和Joseph Martin介绍了显微镜的

首个超高分辨率分布式量子传感网络问世

  韩国科学技术研究院(KIST)量子技术中心团队取得一项突破性进展:成功构建了全球首个具备超高分辨率的分布式量子传感网络。该成果发表于最新一期《物理评论快报》,标志着量子传感技术向实用化迈出了关键一步,同时为下一代精密测量技术的发展开辟了新路径,也为量子科技从实验室走向实际应用提供了重要支撑。