人工智能算法有助于快速分析蛋白质折叠结构

近日,英国《自然》杂志报道,美国哈佛大学医学院生物学家AlQuraishi开发出新型人工智能算法,能够快速分析预测蛋白质三维结构,大大提高蛋白质三维结构预测的效率,将预测时间从若干小时或几天缩短至几毫秒。 报道称,蛋白质三维结构与蛋白质功能密切相关,当前生物学界一大挑战在于如何基于氨基酸序列预测蛋白质三维结构。目前常用的实验室测定方法为X射线晶体衍射测定。随着人工智能技术的发展,科学界不断尝试利用人工智能技术从蛋白质一级结构(即氨基酸序列),分析预测蛋白质的三级结构(即三维空间结构)。Google人工智能子公司DeepMind曾开发出新型蛋白质三维结构预测算法AlphaFold,取得一定进展,有助于研究人员更好理解疾病分子机制和设计药物。 该新型算法主要基于神经网络算法,利用氨基酸序列和蛋白质结构对应的现有数据进行训练,对未知序列能够产生的结构进行预测。目前,此算法需要花费数月时间进行训练,但完成训练后几乎能够实现即时预测。......阅读全文

人工智能算法有助于快速分析蛋白质折叠结构

近日,英国《自然》杂志报道,美国哈佛大学医学院生物学家AlQuraishi开发出新型人工智能算法,能够快速分析预测蛋白质三维结构,大大提高蛋白质三维结构预测的效率,将预测时间从若干小时或几天缩短至几毫秒。  报道称,蛋白质三维结构与蛋白质功能密切相关,当前生物学界一大挑战在于如何基于氨基酸序列预测蛋

蛋白质折叠的过程

主要结构蛋白质的主要结构及其线性氨基酸序列决定了其天然构象。特定氨基酸残基及其在多肽链中的位置是决定因素,蛋白质的某些部分紧密折叠在一起并形成其三维构象。氨基酸组成不如序列重要。然而,折叠的基本事实仍然是,每种蛋白质的氨基酸序列都包含指定天然结构和达到该状态的途径的信息。这并不是说几乎相同的氨基酸序

什么是蛋白质折叠?

蛋白质折叠是物理过程,通过该蛋白链获得其天然 的三维结构中,构象即通常生物功能,以迅速和可再现的方式。这是一个物理过程,多肽从一个随机的线圈中折叠成其特征和功能性三维结构。当从mRNA序列翻译成氨基酸的线性链时,每种蛋白质都以未折叠的多肽或无规卷曲的形式存在。该多肽缺乏任何稳定的(持久的)三维结构。

蛋白质在缺氧时折叠

蛋白质通常由成百上千个独立的部分组成,即氨基酸。它们像链条上的链环一样连接在一起。然而,蛋白质分子不能像长丝一样来回摆动。因此,每一件作品在创作过程中都以自己独特的方式折叠起来。对于从细胞外释放或运输到细胞内储存的蛋白质,这种折叠发生在细胞的一个特定位置:内质网(ER)。这里,在蛋白质折叠过程中相互

蛋白质折叠的主要结构

蛋白质的主要结构及其线性氨基酸序列决定了其天然构象。特定氨基酸残基及其在多肽链中的位置是决定因素,蛋白质的某些部分紧密折叠在一起并形成其三维构象。氨基酸组成不如序列重要。然而,折叠的基本事实仍然是,每种蛋白质的氨基酸序列都包含指定天然结构和达到该状态的途径的信息。这并不是说几乎相同的氨基酸序列总是相

简述蛋白质折叠的生长模型

  根据这种模型,肽链中的某一区域可以形成“折叠晶核”,以它们为核心,整个肽链继续折叠进而获得天然构象。所谓“晶核”实际上是由一些特殊的氨基酸残基形成的类似于天然态相互作用的网络结构,这些残基间不是以非特异的疏水作用维系的,而是由特异的相互作用使这些残基形成了紧密堆积。晶核的形成是折叠起始阶段限速步

展望蛋白质折叠的未来前景

  包涵体复性  ▲利用DNA重组技术可以将外源基因导入宿主细胞。但重组基因的表达产物往往形成无活性的、不溶解的包涵体。折叠机制的阐明对包涵体的复性会有重要帮助。  蛋白质  ▲DNA重组和多肽合成技术的发展使我们能够按照自己的意愿设计较长的多肽链。但由于我们无法了解这一多肽将折叠为何种构象,从而无

关于蛋白质折叠的研究概况

  在生物体内,生物信息的流动可以分为两个部分:第一部分是存储于DNA序列中的遗传信息通过转录和翻译传入蛋白质的一级序列中,这是一维信息之间的传递,三联子密码介导了这一传递过程;第二部分是肽链经过疏水塌缩、空间盘曲、侧链聚集等折叠过程形成蛋白质的天然构象,同时获得生物活性,从而将生命信息表达出来;而

关于蛋白质折叠的基本介绍

  蛋白质折叠(Protein folding)是蛋白质获得其功能性结构和构象的过程。通过这一物理过程,蛋白质从无规则卷曲折叠成特定的功能性三维结构。在从mRNA序列翻译成线性的肽链时,蛋白质都是以去折叠多肽或无规则卷曲的形式存在。  结构决定功能,仅仅知道基因组序列并不能使我们充分了解蛋白质的功能

蛋白质折叠的细胞密码破解

  人们通常认为,疾病是由异物(细菌或病毒)入侵人体引起的,但影响人类的数百种疾病,其实是由细胞蛋白质生成错误引起的。美国马萨诸塞大学阿默斯特分校领导的团队最近利用尖端技术,破解了基于碳水化合物的代码,该代码控制某些蛋白质的正常形状,而正常的蛋白质形状才能使人体保持健康。研究发表在最新一期《分子细胞

蛋白质折叠的驱动力

折叠是一种自发过程,主要由疏水相互作用,分子内氢键的形成,范德华力引导,并且与构象熵相反。折叠的过程通常始于共翻译,使N末端的蛋白质的开始而折叠C-末端的蛋白质的部分仍然被合成由核糖体; 但是,蛋白质分子在生物合成过程中或之后可能会自发折叠。这些大分子可能被视为“自身折叠”,其过程还取决于溶剂(水或

关于蛋白质折叠病的介绍

  蛋白质分子的氨基酸序列不发生改变,只是其结构或者说构象有所改变也能引起疾病,称为“构象病”,或称“折叠病”。  疯牛病由Prion蛋白质的感染引起,这种蛋白质也可以感染人而引起神经系统疾病。在正常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一级结构完全相同,

关于蛋白质折叠的意义介绍

  蛋白质折叠机制的阐明将揭示生命体内的第二套遗传密码,这是它的理论意义。蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。在概念上有热力学的问题和动力学的问题;蛋白质在体外折叠和在细胞内折叠的问题;有理论研究和实验研究的问题。这里最根本的科学问题

蛋白质的新生肽链的折叠

近年来,对蛋白质的新生肽链在体内的折叠研究已成为一个热点,发现了许多帮助肽链折叠的蛋白质,其中有些有利于二硫键的交换和配对(二硫键异构酶)与脯氨酰参与的肽键的异构化(肽基脯氨酰异构酶),还有一大类被称为蛋白质伴侣。后者的主要特点是能和疏水性的肽段结合,一方面避免肽链因疏水作用而聚集,另一方面帮助新生

蛋白质折叠的框架模型的介绍

  框架模型[4] 假设蛋白质的局部构象依赖于局部的氨基酸序列。在多肽链折叠过程的起始阶段,先迅速形成不稳定的二级结构单元; 称为“flickering cluster”,随后这些二级结构靠近接触,从而形成稳定的二级结构框架;最后,二级结构框架相互拼接,肽链逐渐紧缩,形成了蛋白质的三级结构。这个模型

概述蛋白质复性的折叠机制

  为了有的放矢地开发辅助蛋白质复性的技术,研究工作者纷纷开展了对蛋白质折叠机制的探讨。有两种不同的假设:一种假设认为,肽链中的局部肽段先形成一些构象单元,如α螺旋、β折叠、β转角等二级结构,然后再由二级结构单元的组合、排列,形成蛋白质三级结构;另一种假设认为,首先是由肽链内部的疏水相互作用导致一个

蛋白质折叠的分子伴侣的介绍

  1978 年,Laskey 在进行组蛋白和DNA 在体外生理离子强度实验时发现,必须要有一种细胞核内的酸性蛋白———核质素(nucleoplasmin) 存在时,二者才能组装成核小体,否则就发生沉淀。据此Laskey 称它为“分子伴侣”。分子伴侣是指能够结合和稳定另外一种蛋白质的不稳定构象,并能

蛋白质折叠的拼版模型的介绍

  此模型[9]的中心思想就是多肽链可以沿多条不同的途径进行折叠,在沿每条途径折叠的过程中都是天然结构越来越多,最终都能形成天然构象,而且沿每条途径的折叠速度都较快,与单一途径折叠方式相比,多肽链速度较快,另一方面,外界生理生化环境的微小变化或突变等因素可能会给单一折叠途径造成较大的影响,而对具有多

关于蛋白质折叠的粘合机制的介绍

  该模型认为蛋白质的折叠起始于伸展肽链上的几个位点,在这些位点上生成不稳定的二级结构单元或者疏水簇,主要依靠局部序列的进程或中程(3-4个残基)相互作用来维系。它们以非特异性布朗运动的方式扩散、碰撞、相互黏附,导致大的结构生成并因此而增加了稳定性。进一步的碰撞形成具有疏水核心和二级结构的类熔球态中

植物蛋白质氧化折叠研究中进展

  二硫键的形成对于真核生物的分泌蛋白和质膜蛋白在内质网中的折叠十分重要。在动物和酵母中,内质网氧化还原蛋白oxidoreductin-1 (Ero1) 是二硫键的主要供体,将二硫键通过蛋白质二硫键异构酶(PDI)传递给底物蛋白。前期,中国科学院遗传与发育生物学研究所农业资源研究中心研究员吕东平研究

JBC:分子伴侣帮助蛋白质折叠的分子机理

  分子伴侣是一种协助蛋白质进行折叠的分子助手,其中一种伴侣分子是所谓的热激蛋白60(Hsp60),这种蛋白可以在线粒体中形成一种类似于“桶状”的结构,从而便于蛋白折叠过程的发生,近日刊登于the Journal of Biological Chemistry上的一篇研究论文中,来自弗莱堡大学的研究

关于蛋白质折叠的格点模型的介绍

  格点模型(也简称HP模型),最早是由Dill等人1989年提出的。格点模型可分为二维模型和三维模型两类。二维格点模型就是在平面空间中产生正交的单位长度的网格,每个氨基酸分子按在序列中排序的先后顺序依次放置到这些网格交叉点上,在序列中相邻的氨基酸分子放置在格点中时也必须相邻,即相邻氨基酸分子在格点

翻译全局控制改善外源蛋白质的折叠效率

  近日,华南理工大学林影教授和暨南大学张弓教授的团队在Biotechnology for Biofuels杂志(生物工程类一区)上发表文章,使用翻译全局控制方法,改善外源蛋白质在毕赤酵母中表达的折叠效率,有效提高活性蛋白质产量。据悉,这是翻译组调控在真核生物细胞工厂底盘细胞中的首次成功应用,极大地

新方法可辨别蛋白质折叠关键因素

  蛋白质折叠模式帮助其执行特定任务。作为细胞的真正“实干家”,即便是蛋白质氨基酸支架的微小改变,也会引发错误折叠并且妨碍蛋白质功能或引发疾病。  科学家试图更好地理解蛋白质折叠,以治疗错误折叠引发的疾病。但这个异常复杂的过程需要复杂算法辨别折叠机制。印度塔塔基础研究所的计算生物物理学家提出了一种辨

RNA翻译与蛋白质折叠之间的微妙舞蹈

  在蛋白质的合成过程中,RNA翻译会影响蛋白质的折叠,而蛋白质折叠也会影响RNA的翻译。  在过去的十年里,我们对细胞内蛋白质合成方式的认知取得了快速的增长,其中包括蛋白质合成的各个基本步骤:转运RNA(transfer RNA, tRNA)是如何高保真、高速率地对信使RNA(messenger

关于蛋白质二级结构的β折叠的介绍

  β折叠是指多肽链以肽单元为单位,以Cα为旋转点形成伸展的锯齿状折叠构象,又称3片层(3-strand)结构,具有下列特征。  (1)肽链折叠成伸展的锯齿状,肽单元间的夹角为110°,氨基酸残基的R侧链分布在片层的上下。  (2)两条以上肽链(或同一条多肽链的不同部分)平行排列,相邻肽链之间的肽键

科学家利用DNA折纸技术成功折叠蛋白质

科学家利用DNA折纸技术成功折叠蛋白质   “折纸”是指通过生物工程手段将蛋白质从一条连续链折叠成三维结构,这是《自然—化学生物学》上一篇文章的研究发现。   DNA 折纸是一种利用特定碱基来设计大量不同的结构,如笑脸、大学校徽和各种盒子等的DNA技术,该技术已经为科学家创造智能材料和研究弄

上海药物所蛋白质折叠计算模拟研究取得进展

  在生物体系中,蛋白质通过折叠成特定的三维结构发挥功能。这种折叠过程可能受到不同因素的影响,如配体结合、聚合状态等。充分理解蛋白质折叠过程对于药物分子设计、蛋白质突变所导致致病机理的预测、深入了解细胞功能以及进化都至关重要。大规模计算机模拟有潜力从原子水平捕捉整个蛋白系统的动态过程,但是

日本合成融合酶-能将人造氨基酸折叠成蛋白质

日前,日本理化研究所和东京大学宣布,两家机构共同合成了能将人造氨基酸正确折叠成蛋白质的融合酶。这项成果将可能带来多种拥有新功能的蛋白质,贡献于生物技术、医药等行业。 上述两家机构共同发表新闻公报说,生物体内的蛋白质由20种氨基酸根据DNA中包含的遗传信息按照一定的数量和顺序结合而成。目前,增加蛋白

青岛能源所在细胞内蛋白质折叠研究方面取得进展

  蛋白质发挥功能的“原位”环境是细胞,因此在细胞内开展蛋白质的结构和动力学研究对蛋白质功能的解析至关重要。细胞内大分子的浓度可以达到300-450g/L,拥挤的细胞环境可能会影响蛋白质的折叠,进而影响其功能。但是细胞环境如何影响蛋白质折叠过程目前并不很清晰。  近日,中国科学院青岛生物能源与过程研