显微技术(图)

显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。—、光学显微镜(一)、普通光学显微镜普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便(图2-1)。图2-1 尼康E-600显微镜显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为:式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180˚,所以sina/2的最大值必然小于1。制作光学镜头所用的玻......阅读全文

显微镜技术——荧光显微技术

Immunofluorescencc Microscopy of tissue culture cells (Microscopy and Electronic Imaging Lab)These methods are written for direct staining of filament

显微镜技术——光学显微技术

The Light Microscope (House Ear Institute)An explanation of how the light microscope works, how to use it, and how to get optimal results when using i

显微技术

  显微技术是微生物检验技术中最常用的技术之一。显微镜的种类很多,在实验室中常用的有:普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜和电子显微镜等。而在食品微生物检验中最常用的还是普通光学显微镜。  一、普通光学显微镜的结构和基本原理:1.结构:  光学显微镜是由光学放大系统和机械装置两部分组

显微镜技术——电子显微技术

The Transmission Electron Microscope (TEM) (HEI)An explanation of how the TEM works.  TEM Specimen Preparation (HEI)  Serial Sectioning (Walter Steffe

显微切割技术

一、显微切割技术出现的背景在分子病理学研究中,常常遇到两个比较棘手的问题:一是选取的研究材料需要在某一方面具有相同的特征,即具有一定程度的同质性。我们人体的各种组织绝大多数是由多种不同细胞组成的异质性的细胞群,这种选取同质性的研究材料问题在对人体组织的深入研究中常常遇到却又不易解决;二是随着研究的不

显微技术(图)

显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。—、光学显微镜(一)、普通光学显微镜普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除

显微切割技术

  一、显微切割技术出现的背景   在分子病理学研究中,常常遇到两个比较棘手的问题:   一是选取的研究材料需要在某一方面具有相同的特征,即具有一定程度的同质性。我们人体的各种组织绝大多数是由多种不同细胞组成的异质性的细胞群,这种选取同质性的研究材料问题在对人体组织的深入研究中常常遇到却又不易解

显微切割技术

  一、显微切割技术出现的背景   在分子病理学研究中,常常遇到两个比较棘手的问题:   一是选取的研究材料需要在某一方面具有相同的特征,即具有一定程度的同质性。我们人体的各种组织绝大多数是由多种不同细胞组成的异质性的细胞群,这种选取同质性的研究材料问题在对人体组织的深入研究中常常遇到却又不易解

显微切割技术

  一、显微切割技术出现的背景   在分子病理学研究中,常常遇到两个比较棘手的问题:   一是选取的研究材料需要在某一方面具有相同的特征,即具有一定程度的同质性。我们人体的各种组织绝大多数是由多种不同细胞组成的异质性的细胞群,这种选取同质性的研究材料问题在对人体组织的深入研究中常常遇到却又不易解

显微技术(图)

显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。—、光学显微镜(一)、普通光学显微镜普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除

显微技术概述

显微技术概述在近代仪器发展史上,显微技术一直随着人类科技进步而不断的快速发展,科学研究及材料发展也随着新的显微技术的发明,而推至前所未有的微小世界。自从 1982 年Binning 与 Robher 等人共同发明扫描穿隧显微镜(scanning tunneling microscope, STM)之

显微制片技术

 显微制片技术     在进行显微鉴别时,首先要将“检样”制成适于镜检的标本。对于完整的药材可制成各种切面的切片;对于粉末药材(包括丸、散等成方)可直接装片或作适当处理后制片。²  永久片制作技术²  临时制片技术²  滑走切片机——半自动切片机²  透射光生物学显微镜²  连续变倍体视显微镜²  

显微注射技术的技术分类

显微操作技术包括细胞核移植、显微注射、嵌合体技术、胚胎移植以及显微切割等,例如多莉羊就是运用细胞核移植技术而成功的;而转基因技术指的是将外源基因导入体细胞并能稳定的嵌入宿主动物的生殖细胞染色体中的一门技术,基因转殖动物被定义为由人为的方式将外源基因引入体内而引起基因改变的动物,并可将遗传特质传递到接

显微摄影技术

实验概要本文介绍了显微摄影(Microphotography)技术,有助于了解生物显微摄影的基本原理和装置,以及照相暗室工作的基本过程。实验原理显微摄影是通过摄影装置拍摄显微镜视野中物体影像的过程,它是必备的一项常用显微技术。它的基本原理是将标本的图像,通过显微镜投射到感光材料(胶卷)上而成为永久性

显微标本制作技术

一、实验原理 显微标本的制作技术是组织学,胚胎学,生理学及细胞学等学科研究观察细胞、组织的生理、病理形态变化的一种主要方法。大多数的生物材料,在自然状态下是不适合显微观察的,也无法看到其内部结构。因为材料较厚,光线不易透过,以致不易看清其结构,另外细胞内的各个结构,由于其折射率相差很小,即使光线可透

显微摄影技术

一、实验目的了解生物显微摄影的基本原理和装置,以及照相暗室工作的基本过程。二、实验原理显微摄影是通过摄影装置拍摄显微镜视野中物体影像的过程,它是必备的一项常用显微技术。它的基本原理是将标本的图像,通过显微镜投射到感光材料(胶卷)上而成为永久性记录。三、实验仪器、材料和试剂材料和标本:人类染色体标本,

显微注射技术介绍

时光荏苒,岁月穿梭,现已是公元2019年,回望2018,请允许小编以这古龙先生之词怀金庸先生之作。2018,注定是不平凡的一年,生命科学领域可谓是悲喜交加,前有科学家利用单细胞分离与单细胞测序技术揭示胚胎发育过程助力生命医学研究,后有饱受争议的世界首例基因编辑婴儿的诞生[1],科学的脚步以超乎人类想

显微标本制作技术

一、实验原理 显微标本的制作技术是组织学,胚胎学,生理学及细胞学等学科研究观察细胞、组织的生理、病理形态变化的一种主要方法。大多数的生物材料,在自然状态下是不适合显微观察的,也无法看到其内部结构。因为材料较厚,光线不易透过,以致不易看清其结构,另外细胞内的各个结构,由于其折射率相差很小,即使光线可透

显微注射的技术方法

在高倍倒置显微镜下,利用显微操作器(Micromanipulator),控制显微注射针在显微镜视野内移动的机械装置,用来进行细胞或早期胚胎操作的一种方法。

显微注射的技术分类

显微操作技术包括细胞核移植、显微注射、嵌合体技术、胚胎移植以及显微切割等,例如多莉羊就是运用细胞核移植技术而成功的;而转基因技术指的是将外源基因导入体细胞并能稳定的嵌入宿主动物的生殖细胞染色体中的一门技术,基因转殖动物被定义为由人为的方式将外源基因引入体内而引起基因改变的动物,并可将遗传特质传递到接

超分辨显微技术浅析

光学显微成像的衍射极限 生物医学成像技术是基础生物学研究和临床医学最重要的工具之一。回顾历史,已有多位科学家凭借在成像技术方面的突破获得诺贝尔奖。其中,Roentgen 因发现 X 射线获得 1901 年诺贝尔物理学奖; Zernike 因发明相衬显微镜获得 1953 年诺贝尔

荧光显微技术检测方法

(一)直接法:用特异荧光抗体直接滴加于标本上,使之与抗原发生特异性结合。本法操作简便,特异性高,非特异荧光染色因素少;缺点是敏感度偏低,且每检查一种抗原需制备相应的特异荧光抗体。(二)间接法:可用于检测抗原和抗体。本法有两种抗体相继作用,第一抗体为针对抗原的特异抗体,第二抗体(荧光抗体)为针对第一抗

显微解剖的技术介绍

中文名称显微解剖英文名称micro-dissection定  义在立体显微镜下对被观察物体进行剖析的技术。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)

共聚焦显微技术应用

共聚焦显微技术应用  细胞生物学如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞与癌细胞的细胞骨

超分辨显微技术浅析

光学显微成像的衍射极限生物医学成像技术是基础生物学研究和临床医学最重要的工具之一。回顾历史,已有多位科学家凭借在成像技术方面的突破获得诺贝尔奖。其中,Roentgen 因发现 X 射线获得 1901 年诺贝尔物理学奖; Zernike 因发明相衬显微镜获得 1953 年诺贝尔物理学奖; Ruska

显微术的技术特点

中文名称显微术英文名称microscopy定  义利用显微镜、制片、染色等各种方法在细胞、亚细胞甚至原子水平观察生命现象的技术。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)

显微注射法技术要求

这种显微注射术的程序,需有相当精密的显微操作设备,制造长管尖时,需用微量吸管拉长器(micropipettepuller),注射时需有固定管尖位置的微量操作器。这种技术的长处为任何DNA在原则上均可传入任何种类的细胞内。此法已成功运用于包括小鼠、鱼、大鼠、兔子及许多大型家畜,如牛、羊、猪等基因转殖动

一种新的光学显微镜技术光敏定位显微技术

一种新的光学显微镜技术--光敏定位显微技术NIH发布消息称,它名下的Howard Hughes医学研究所加盟的2名科学家Eric Betzig、Harald Hess 博士和佛罗里达州立大学的Michael Davidson等研究人员共同开发出一种新的光学显微镜技术,采用该技术能够观察到细胞内蛋白质

生物显微镜显微镜的光学技术

生物显微镜用途:生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。显微镜的重要光学技术参数在镜检时,人们总是希望能

前沿显微成像技术专题——超分辨显微成像(1)

从16世纪末开始,科学家们就一直使用光学显微镜探索复杂的微观生物世界。然而,传统的光学显微由于光学衍射极限的限制,横向分辨率止步于 200 nm左右,轴向分辨率止步于500 nm,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然随着扫描电镜、扫描隧道显微镜及