新一代单分子定位超分辨成像探针pcStar实现超早期标记

基于单分子定位的超分辨显微成像技术PALM打破了光学衍射极限,于2014年获得了诺贝尔化学奖。相对于目前广泛使用的其它超分辨成像技术而言,该技术具有最高的空间分辨率(~20 nm),因此在生物学中带来了广泛的应用。但是由于该技术需要成千上万张原始图片来重构一张超分辨图像,时间分辨率低,在活细胞中应用该技术面临挑战。 另外,受现有光控荧光蛋白的限制,观察发育过程中超早期结构成像也是目前超高分辨率成像面临的另一挑战。用荧光蛋白标记发育生物具有非入侵、低毒害、低背景等特点,但由于荧光蛋白的折叠和成熟以及累积需要时间,其荧光信号的出现往往滞后于发育中某些早期事件的发生。更早发光的荧光蛋白往往能捕捉发育中更早出现的结构或事件,也使得依据荧光信号进行的定量分析和数据解释变得更加精确和可靠。但目前,在超分辨成像中应用较广的光转化荧光蛋白均不具有发光早的特性。 针对超分辨成像中的这两个问题,中国科学院生物物理研究所徐涛研究组和徐平勇课题......阅读全文

超分辨成像探针和方法开发研究获进展

  基于单分子定位的超分辨显微成像技术PALM打破了光学衍射极限,于2014年获得了诺贝尔化学奖。相对于目前广泛使用的其它超分辨成像技术而言,该技术具有最高的空间分辨率(~20 nm),因此在生物学中带来了广泛的应用。但是由于该技术需要成千上万张原始图片来重构一张超分辨图像,时间分辨率低,在活细胞中

科学家开发出深度学习超分辨显微成像方法

1月21日,中国科学院生物物理所、广州生物岛实验室研究员李栋课题组,与清华大学自动化系、脑与认知科学研究院教授戴琼海课题组,在Nature Methods上以长文(Article)形式发表了题为Evaluation and development of deep neural net

科学家开发出深度学习超分辨显微成像方法

  1月21日,中国科学院生物物理所、广州生物岛实验室研究员李栋课题组,与清华大学自动化系、脑与认知科学研究院教授戴琼海课题组,在Nature Methods上以长文(Article)形式发表了题为Evaluation and development of deep neural networks

新一代单分子定位超分辨成像探针pcStar实现超早期标记

  基于单分子定位的超分辨显微成像技术PALM打破了光学衍射极限,于2014年获得了诺贝尔化学奖。相对于目前广泛使用的其它超分辨成像技术而言,该技术具有最高的空间分辨率(~20 nm),因此在生物学中带来了广泛的应用。但是由于该技术需要成千上万张原始图片来重构一张超分辨图像,时间分辨率低,在活细胞中

科学家开发出合理化深度学习超分辨显微成像方法

  光学超分辨显微成像技术使人们能够从微观纳米尺度观测细胞内的动态生命活动,是当今细胞生物学、发育生物学、神经科学等生命科学领域的重要研究工具。基于深度学习的超分辨成像技术在保证成像指标,如速度、时程或视野等性能的前提下,进一步提升了显微图像分辨率或信噪比,表现出更大的应用前景。  近日,中国科学院

三维多色超分辨成像应用的开发与实现

  近日,南方科技大学生物医学工程系教授吴长锋课题组成功开发了一系列高亮度聚合物点荧光探针,通过荧光探针功能化和扩展成像技术,在普通荧光显微镜上可以观察到精细的亚细胞结构,分辨率高达30 nm。相关成果发表在材料领域知名期刊Advanced Materials(DOI: 10.1002/adma.2

三维多色超分辨成像应用的开发与实现

  近日,南方科技大学生物医学工程系教授吴长锋课题组成功开发了一系列高亮度聚合物点荧光探针,通过荧光探针功能化和扩展成像技术,在普通荧光显微镜上可以观察到精细的亚细胞结构,分辨率高达30 nm。相关成果发表在材料领域知名期刊Advanced Materials。  超分辨光学成像因其能够提供低于衍射

硬核!大连化物所指导开发超分辨成像自闪荧光染料

  近日,大连化物所分子探针与荧光成像研究组(1818组)徐兆超研究员团队与新加坡科技设计大学刘晓刚教授团队合作,发现罗丹明染料开关环物种稳态下的吉布斯自由能的差值(ΔGC-O)同开环比例具有优异的线性关系(R2=0.965)。此线性关系可以定量地指导设计特定开环比例的罗丹明染料。  单分子定位超分

光致开关荧光探针用于微管蛋白的原位检测和超分辨成像

微管蛋白一直被认为是潜在癌症化疗的靶点。许多临床数据表明:跟踪微管蛋白的变化将有助于对癌症治疗。传统的宽场光学显微镜的显微分辨率受到衍射极限的限制,无法获得细胞内的精细结构信息,大大降低了对微管蛋白类分子的观察能力。远场超分辨成像方法是近些年发展起来的利用荧光分子在纳米级分辨率下对生物体内的相关物质

开发新型超分辨成像技术揭示细胞器互作新现象

  10月25日,中国科学院生物物理研究所李栋课题组与美国霍华德休斯医学研究所博士Eric Betzig、Jennifer Lippincott-Schwartz合作在《细胞》(Cell)杂志发表研究论文“Visualizing intracellular organelle and cytoske

前沿显微成像技术专题——超分辨显微成像(1)

从16世纪末开始,科学家们就一直使用光学显微镜探索复杂的微观生物世界。然而,传统的光学显微由于光学衍射极限的限制,横向分辨率止步于 200 nm左右,轴向分辨率止步于500 nm,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然随着扫描电镜、扫描隧道显微镜及

前沿显微成像技术专题——超分辨显微成像(2)

上一期我们为大家介绍了几种主要的单分子定位超分辨显微成像技术,还留下了一些问题,比如它的分辨率是由什么决定的?获得的大量图像数据如何进行重构?本期我们就来为大家解答这些问题。单分子定位超分辨显微成像的分辨率单分子定位超分辨显微成像的分辨率主要由两个因素决定:定位精度和分子密度。定位精度是目标分子在横

高速图像重建助力实时超分辨成像

    JSFR-SIM算法和传统Wiener-SIM算法的重建流程对比示意图。    JSFR-SIM可实时显示微管和线粒体动态。    高速实时超分辨结构光照明显微成像光路(a)和快速实时超分辨结构光照明显微成像系统样机(b)。图片来源:论文作者    超分辨荧光显微成像技术打破

我所发展聚集体调控探针实现多种细胞器动态超分辨成像

  近日,我所分子探针与荧光成像研究组(1818组)徐兆超研究员团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见

新思路!稀疏傅里叶单像素成像方法-实现超分辨率成像

  近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所时东锋等科研人员提出了稀疏傅里叶单像素成像方法,该方法在降低采样数量的同时,能够维持图像质量不发生大的退化。该研究成果发表在最新一期Optics Express上。  傅里叶单像素成像利用傅里叶变换性质,采用具有傅里叶分布的照明光来获取物体

超细内窥镜动态超分辨成像方面研究新进展

  浙江大学及之江实验室联合团队的杨青教授、刘旭教授在光场经复杂动态介质中的快速恢复及超分辨成像方面取得进展。研究结果以“单根多模光纤用于体内光场编码内窥镜成像(Single multimode fibre for in vivo light-field-encoded endoscopic ima

新型纳米力学成像探针实现DNA的直读检测和高分辨成像

  近日,中国科学院上海应用物理研究所物理生物学研究室与上海交通大学、南京邮电大学合作,基于DNA纳米技术发展了一系列DNA折纸结构并作为纳米力学成像探针,实现了原子力显微镜下对基因组DNA的直读检测和高分辨成像。相关结果发表于《自然-通讯》(Nature Communications 2017,

新型纳米力学成像探针实现DNA的直读检测和高分辨成像

  近日,中国科学院上海应用物理研究所物理生物学研究室与上海交通大学、南京邮电大学合作,基于DNA纳米技术发展了一系列DNA折纸结构并作为纳米力学成像探针,实现了原子力显微镜下对基因组DNA的直读检测和高分辨成像。相关结果发表于《自然-通讯》(Nature Communications 2017,

超分辨荧光蛋白开发研究获进展

  绿色荧光蛋白(GFP)的发明因其能够提供对于活细胞和活体动物的靶向基因修饰标记而获得2008年诺贝尔化学奖。进一步,由基因改造的光激活荧光蛋白(PA-FP)能够提供单分子特性,而实现了超分辨显微,使得这一技术获得2014年诺贝尔化学奖。随后,超分辨的发展向着活细胞动态超高时空分辨率显微迈进。其中

哈工大突破高通量超分辨显微成像难题

  近日,哈尔滨工业大学仪器学院青年教授李浩宇团队在生物医学超分辨显微成像技术领域取得突破性进展。针对目前超分辨显微镜所面临的成像通量限制,团队提出基于计算光学成像的新一代高通量三维动态超分辨率成像方法,通过计算成像技术增强荧光涨落探测灵敏度,使探测灵敏度提升两个数量级以上,突破了现有显微成像技术在

超分辨光学显微成像技术的新进展

从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得

超分辨成像技术看清细胞“刽子手”的行刑过程

近日,中国科学院院士、厦门大学教授韩家淮和厦门大学副教授陈鑫团队借助单分子定位超分辨成像技术“随机光学重建显微镜(STORM)”,首次揭示了“坏死小体”在细胞中的组织结构特征及其对细胞死亡的决定作用,为人类相关疾病治疗干预提供了新思路。相关论文已在《自然·细胞生物学》上发表。超清成像技术让推论“眼见

我国学者在超细内窥镜动态超分辨成像方面取得进展

  在国家自然科学基金项目(批准号:T2293751、T2293750)资助下,浙江大学及之江实验室联合团队的杨青教授、刘旭教授在光场经复杂动态介质中的快速恢复及超分辨成像方面取得进展。研究结果以“单根多模光纤用于体内光场编码内窥镜成像(Single multimode fibre for in v

“光电融合超分辨生物显微成像系统”通过验收

  2016年6月21日,国家重大科研仪器研制项目(部门推荐)“光电融合超分辨生物显微成像系统”现场验收会在北京召开。国家自然科学基金委员会(以下简称基金委)副主任沈岩院士出席会议并讲话。基金委计划局局长王长锐、生命科学部常务副主任杜生明研究员、生命科学部副主任冯雪莲研究员、财务

“光电融合超分辨生物显微成像系统”获验收

  近日,国家重大科研仪器研制项目(部门推荐)“光电融合超分辨生物显微成像系统”现场验收会在北京召开。基金委副主任沈岩院士出席会议并发表讲话。  根据《国家重大科研仪器设备研制专项实施管理工作细则》和《国家重大科研仪器研制项目验收工作方案(试行)》要求,本次现场验收考核专家组由重大科研仪器专项专家委

大连化物所实现多种细胞器动态超分辨成像

近日,我所分子探针与荧光成像研究组(1818组)徐兆超研究员团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未

超分辨荧光显微成像技术的基本原理

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米

季铵哌嗪如何实现荧光超分辨率成像?

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

超分辨荧光显微成像技术的基本原理

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米

超分辨荧光显微成像技术的基本原理

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米