科学家首次实现活细胞RNA标记与无背景成像
图为《自然—生物技术》11月期封面图片。它显示了利用荧光RNA可对单细胞中mRNA的翻译过程进行定量研究。癌细胞中mRNA水平与其编码蛋白质水平之间存在较低相关性,提示癌细胞的翻译调控显著失调,这为癌症的诊疗提供一种全新的思路。 华东理工大学生物反应器工程国家重点实验室的杨弋、朱麟勇等教授历经7年合作研究,在荧光RNA及活细胞RNA成像领域获突破性进展。他们原创的系列高性能荧光RNA,在国际上首次实现了不同种类RNA在动物细胞内的荧光标记与无背景成像。11月5日,该成果以封面论文形式发表于《自然—生物技术》。 荧光蛋白标记技术是蛋白质研究的巨大助力,其研究在2008年曾获得诺贝尔奖。类似的,RNA研究也迫切需要这样的颠覆性研究工具。但迄今为止,在自然界尚未发现天然存在的荧光RNA;而科学家们几经努力人工合成的少数几种荧光RNA又性能过低,难以实用。针对这一亟需解决的技术挑战,杨弋、朱麟勇等组成了化学生物学与合成生物学联合交叉......阅读全文
活细胞的标记步骤以及注意事项
活细胞的标记步骤以及注意事项是什么耐心看完下文你就会有了答案。用蒸馏水配制贮存液,4摄氏度避光保存。标记时用蒸馏水稀释100倍。2.吸去细胞培养基。3.用PBS(+)冲洗细胞3次。4.将细胞于Hoechst标记液中室温下孵育10一30分钟。S.吸去标记液,并用PBS(+)冲洗3次,然后固定盖玻片:注
活细胞成像用哪种显微镜
活细胞成像可以选择共聚焦显微镜,共聚焦与传统显微镜的原理差别在于照明方式不同:传统显微镜是一次性照明整个视野中的样品,因此可以用眼睛直接观察或者用CCD获取图像,没有时间延迟;而共聚焦显微镜是逐点成像,无法用CCD获取图像,只能用探测器收集每个象素点的信号,再通过软件重构图像,有一定的时间延迟。共聚
活细胞成像和数据分析系统
活细胞成像和数据分析系统是一种用于生物学领域的分析仪器,于2018年11月26日启用。 技术指标 光源:IncuCyte Zoom HD/2CLR的相差光源和荧光光源均为LED光源。 物镜倍数:IncuCyte Zoom HD/2CLR的物镜倍数是4倍或10倍或20倍,可由用户自行更换。 成
实时动态活细胞成像分析仪
实时动态活细胞成像分析仪是一种用于药学领域的医学科研仪器,于2019年9月25日启用。 技术指标 IncuCyte Zoom HD/2CLR的相差光源和荧光光源均为LED光源,有高灵敏度CCD成像系统及高清晰度光学元件,10倍物镜的成像分辨率为1.22µm/像素,像素1392×1040,输出
单细胞纳米药物及亚细胞结构无标记原位同步辐射成像技术获重要突破
11月13日,中国科学院国家纳米科学中心陈春英团队在《自然-实验手册》(Nature Protocols)上,发表了题为In situ label-free X-ray imaging for visualizing the localization of nanomedicines and s
无标记近红外二区荧光成像用于慢性肝脏疾病无创监测
NIR-II应用|无标记近红外二区荧光成像用于慢性肝脏疾病无创监测慢性肝脏疾病以及随之带来的肝纤维化是普遍且日益严重的公共健康问题。非酒精性脂肪性肝病(NAFLD, Non-alcoholic fatty liver disease)是指除外酒精和其他明确的损肝因素所致的肝细胞内脂肪过度沉积
新技术:无标记激光解吸电离质谱成像技术
近日,中科院化学研究所活体分析化学重点实验室研究人员联合美国约翰惠普金斯医学院的学者,发展了一种新型无标记激光解吸电离质谱成像技术(LDI MSI)。 研究人员选择新型过渡金属二硫化物-MoS2纳米载药系统,使用LDI MSI技术,可以根据MoS2纳米片和其负载的抗癌药物阿霉素(DOX)在激光
研究实现单个纳米尺度物体无标记光学显微成像
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519411.shtm
研究实现单个纳米尺度物体无标记光学显微成像
近日,中国科学技术大学教授张斗国课题组提出并实现了一种动量空间偏振滤波器件。将该器件安装在传统无标记光学显微镜的出射端,可以高效抑制出射光场的背景噪声,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果日前在线发表于美国《国家科学院院刊》。单个纳米尺度物体,如超细大气颗粒物、金属/
肿瘤细胞的标记及活体荧光成像
摘要 以绿色荧光蛋白( GFP) 作为标记基因转入人类肺癌细胞系(ASTC2a21) , 经800 mg/ L G418 筛选, 获得5 株高表达细胞系. 利用流式细胞仪对GFP 表达的稳定性进行了初步研究, 结果表明本实验中有些细胞株间GFP 表达稳定性有显著差异( P < 0101) . 将稳定
活细胞成像要求在成像过程中的知识
活细胞成像要求在成像过程中始终保持镜台上细胞的存活.应注愈使用zui小强度的激光,因为激光束造成的光损伤在多次扫描时可以录加起来。抗氧化剂(如维生素C)加人培养液可减少来自激发的荧光分子产生的权.因为级可引起自由基形成并杀死细胞。对于一些荧光标记实验.需评价光基礴对标本的影响.一般应进行成像后组织活
Nanolive无标记显微镜在病毒感染活细胞的3D病变效应观...
Nanolive无标记显微镜在病毒感染活细胞的3D病变效应观察的应用瑞士Nanolive公司开发的Nanolive 3D CX 显微镜采用三维全息断层扫描显微技术(DHTM),该技术发表于2013年自然光学期刊【Cotte et al., Nature Photonics7 (2013) 1
RNA干扰的发现背景
RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RN
全自动活细胞实时荧光成像系统概述
全自动活细胞实时荧光成像系统是一种用于生物学领域的分析仪器,于2018年12月11日启用。 1、显微镜采用全封闭箱式设计,并可通过机身TFT触摸屏进行自动进样,调用预设实验程序自动进行成像实验。 2、全自动成像方式,无需任何手动调节即可实现普通明场、斜照明和高衬度浮雕效果PGC成像,并可在荧
活细胞RNA检测-一步轻松实现
一提到RNA的检测,大家的脑海中可能会立即浮现出:RT-PCR、FISH、Northern blot等。的确,这些都是检测RNA的经典方法,但它们需要裂解、固定、RNA抽提等,颇为繁琐。其实,RNA的检测完全可以更smart。默克密理博最新推出的SmartFlare™ RNA“灵光”技术
细胞RNA实时成像或将“成为可能”?!
结合并激活荧光染料的适体荧光 RNA(FR)已用于对丰富的细胞 RNA 种类进行成像。然而,诸如低亮度和具有不同光谱特性的染料 / 适体组合的有限可用性的局限性,限制了这些工具在活的哺乳动物细胞和体内的使用。 2019 年 9 月 23 日,华东理工大学朱麟勇及杨弋共同通讯在 Nature B
我国科学家在RNA成像工具研发方面取得突破性进展
在生物大分子中,核糖核酸(RNA)具有重要的生物学功能,也与人类重大疾病的发生和发展密切相关。人们利用荧光蛋白“点亮”细胞内蛋白质,实现了生命动态过程中蛋白质分子的可视化。与蛋白质相比,大部分种类的RNA结构和功能尚未被鉴定,被称为基因组中的“暗物质”。科学家们一直试图发展人工合成的荧光RNA,
量子点标记实现活细胞内单拷贝艾滋病毒基因的原位成像
艾滋病毒基因组RNA逆转录为DNA,整合在宿主染色体内形成前病毒(HIV provirus),是根除艾滋病毒的最大障碍。在活细胞内对单拷贝或低拷贝的整合态HIV基因标记与成像,对前病毒的识别和切除具有重要意义,但一直是个难题。最近,中国科学院武汉病毒研究所研究员崔宗强与中国科学院生物物理研究所研
多光子显微镜成像:无标记成像在发育生物学中的应用
光学成像可用于发育生物学,从而了解生物体的形成、揭示组织再生机制、认识并管理先天性缺陷和胚胎衰竭等。其中最受关注的两个问题:一是心脏在早期发育中会发生剧烈的形态变化,其潜在功能和生物力学方面仍有待研究;二是中枢神经系统发育异常会导致先天性的疾病,所以需要从动力学、功能和生物力学等方面对大脑发
显微镜对于活细胞成像有什么作用
使用现在已开发的各种荧光蛋白和多色探针几乎可以标记任何分子。 对囊泡、细胞器、细胞和组织中的蛋白质动力学成像的能力为了解细胞在健康和疾病状态下如何工作提供了新的洞察力。 这些包括有丝分裂、胚胎发育和细胞骨架变化等过程的时空动态。研究活细胞时,常见的障碍包括光毒性和光损伤。 要捕捉快速的生物过程,关键
量子点活细胞成像应用的实验方案
量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的荧光亮度是传统荧
zenCELL-owl活细胞动态成像及分析系统介绍
研究背景诸多科研院所的医学院、药学院,药企研发部门、CRO企业每天进行大量的药化实验、细胞增殖抑制实验等,筛选匹配细胞株、检测或验证药化效果、各种药化浓度组、细胞实验组、对比组等造成工作量巨大。现有的实验方法多为终点法,包含有LDH乳酸脱氢酶释放、Caspase酶法、代谢活性检测、胞内ATP浓度检测
显微镜对于活细胞成像有什么作用
使用现在已开发的各种荧光蛋白和多色探针几乎可以标记任何分子。 对囊泡、细胞器、细胞和组织中的蛋白质动力学成像的能力为了解细胞在健康和疾病状态下如何工作提供了新的洞察力。 这些包括有丝分裂、胚胎发育和细胞骨架变化等过程的时空动态。研究活细胞时,常见的障碍包括光毒性和光损伤。 要捕捉快速的生物过程,关键
日本开发出观测活细胞RNA的新技术
日本研究人员日前开发出一种人造核酸,它能够标识拥有特定碱基序列的核酸。借助这样的人造核酸,研究人员观测到了活细胞中RNA(核糖核酸)的活动情况。 为探索细胞的机能,人类迄今开发了种类众多的荧光蛋白质。如果要观测某一细胞,荧光蛋白质可以和这一细胞内部的分子结合,然后发出荧光信号,从而使人们能
我所发展RNA“缓冲荧光探针”用于细胞核核仁成像和核仁应激试剂筛选
原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202403/t20240320_7046923.html近日,我所生物技术研究部分子探针与荧光成像研究组(1818组)乔庆龙副研究员和徐兆超研究员团队发展了能够与RNA特异性可逆结合,在活细胞内对细胞核核仁稳定成像的“缓冲
RNA“缓冲荧光探针”用于细胞核核仁成像和核仁应激试剂筛选
近日,我所生物技术研究部分子探针与荧光成像研究组(1818组)乔庆龙副研究员和徐兆超研究员团队发展了能够与RNA特异性可逆结合,在活细胞内对细胞核核仁稳定成像的“缓冲荧光探针”Nu-AN,实现了对核仁动态轮廓的成像,并通过活细胞内药物诱导下核仁特定形态的可视化,为核仁应激试剂的筛选提供可视化的工具。
LaVision双光子显微镜无损伤无标记THG成像(三)
Fig. 4.THG成像深度与自动化细胞检测 (A–C) 小鼠额前叶皮质的THG图像,成像深度分别为100, 200, and 300 μm 。每幅图像都是3个以2微米深度间隔独立图像的最大密度投影(D) 110 μm深度处神经元细胞的自动检测THG图像。细胞检测的运算法则定义为以红色显示的
LaVision双光子显微镜无损伤无标记THG成像(二)
主要结果Fig. 1.无标记活体大脑的三次谐波显微成像(A)脑组织THG成像的epidetection几何学图示。插图:THG原理。注意基质中没有光学激发发生。(B) 树突处的聚焦激光束。通过将激光聚焦体积设定到树突直径的几倍大小,可以获得部分相匹配,显著的THG信号将会产生。(C)细胞
LaVision双光子显微镜无损伤无标记THG成像(一)
Label-free live brain imaging and targeted patching with third-harmonic generation microscopyStefan Wittea,b,1, Adrian Negreana,b,c, Johannes C. Lodde
实时无标记全自动细胞分析仪介绍
iCELLigence全自动细胞分析仪让您远离MTT实验不断重复还无法得到统一结果的烦恼,让您不再因只看到其中的一个点而损失了其它的细胞生物学信息而无计可施,因为它可以清楚的记录下细胞完整的一生!一:全自动细胞分析仪仪器原理iCELLigence实时无标记全自动细胞分析仪是一款新型的细胞分析平台,具