Antpedia LOGO WIKI资讯

叶绿体和光合色素

一、叶绿体 叶片是光合作用的主要器官,而叶绿体(chloroplast,chlor)是光合作用最重要的细胞器。(一)叶绿体的发育、形态及分布1.发育 高等植物的叶绿体由前质体(proplastid)发育而来,前质体是近乎无色的质体,它存在于茎端分生组织中。当茎端分生组织形成叶原基时,前质体的双层膜中的内膜在若干处内折并伸入基质扩展增大,在光照下逐渐排列成片,并脱离内膜形成囊状结构的类囊体,同时合成叶绿素,使前质体发育成叶绿体。幼叶绿体能进行分裂。 2.形态 高等植物的叶绿体大多呈扁平椭圆形,每个细胞中叶绿体的大小与数目依植物种类、组织类型以及发育阶段而异。一个叶肉细胞中约有10至数百个叶绿体,其长3~7μm,厚2~3μm。 3.分布 叶肉细胞中的叶绿体较多分布在与空气接触的质膜旁,在与非绿色细胞(如表皮细胞和维管束细胞)相邻处,通常见不到叶绿体。这样的分布有利于叶绿体同外界进行气体交换。 4.运动 叶绿体在细胞中不仅......阅读全文

电子传递和光合磷酸化

原初反应使光系统的反应中心发生电荷分离,产生的高能电子推动着光合膜上的电子传递。电子传递的结果,一方面引起水的裂解放氧以及NADP+的还原;另一方面建立了跨膜的质子动力势,启动了光合磷酸化,形成ATP。这样就把电能转化为活跃的化学能。一、电子和质子的传递(一)光合链(photosynthetic c

影响光合作用的因素

植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率(photosynthetic rate)。一、光合速率及表示单位 光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2

光合作用:撑起绿色能源一片天

氧化碳排放、油价飙升、能源危机已成为当前热门的话题。 实际上,地球上的能量巨大。太阳每秒钟到达地面的能量达80万千瓦,如果将太阳光照射地球表面1个小时产生的所有能量聚积起来,就足以满足人类整整一年的能源需求。 而光合作用是地球上最为有效的固定太阳光能的过程,如果人类可以像植物一样利用光合作用,直

不同生育时期的早熟棉花的叶绿素含量变化研究

叶绿素包含叶绿素a和叶绿素b,不同的植物叶绿素含量不同,同种植物的不同时期的叶绿素含量也不相同,下面我们一起看看不同生育时期的早熟棉花的叶绿素含量变化的差异,文章涉及到叶绿素含量的数值,借用叶绿素含量仪进行测量统计。叶片是植物光合作用的主要器官,叶片中的叶绿体是光合作用最主要的细胞器,高等植物在光合

2006年中国植物科学若干领域重要研究进展

4  光合作用与碳循环 光系统Ⅱ (PSⅡ)是叶绿体类囊体膜中的一个色素蛋白复合体,在光合作用 光反应过程中起重要作用。为了阐明 PSⅡ 的组装过程,中国科学院植物研究所张立新研究组对 PSⅡ 低 含量的拟南芥突变体(lpa1)进行了研究。结果表明,体外蛋白质标记实验显示 lpa1

光合作用光能捕获与能量传递的结构基础研究

光合作用作为地球上生物利用太阳能的重要反应,一直是科学研究关注的重点,是植物抗逆性研究、作物高产研究的热点。光合作用根据其反应阶段可以分为基于光能吸收传递转化的光反应和基于CO2同化等酶促过程的暗反应。光反应作为植物利用太阳能的原初反应,光能的吸收传递和转化主要发生在植物叶片或者藻类的类囊体膜上,由

植物所高等植物光合作用捕光色素蛋白转运分子机制研究

  LTD蛋白特异性识别并转运捕光色素蛋白的模式图   高等植物叶绿体是进行光合作用的细胞器。叶绿体有2500-3000个蛋白,95%以上的蛋白是由核基因编码的。核基因编码的叶绿体蛋白首先在细胞质中合成,并通过叶绿体内外被膜和类囊体膜转运通道运输到叶绿体内,从而行使功能。但是一些关

遗传发育所水稻光合效率提高的分子机理研究取得进展

  光合作用是绿色植物及光合细菌在光下利用光合色素,将二氧化碳和水转化为碳水化合物并释放氧气的过程,是整个生物界赖以生存的基础。提高光合作用效率是农作物增产的一个根本途径。   光合作用在绿色植物所特有的细胞器——叶绿体中进行,存在于叶绿体上的光合膜含有丰富的糖脂(半乳糖甘油酯),而

FKM多光谱荧光动态显微成像系统应用于释秋海棠蓝色叶...

FKM多光谱荧光动态显微成像系统应用于释秋海棠蓝色叶片的特殊光合机制研究KM多光谱荧光动态显微成像系统帮助科学家解释秋海棠蓝色叶片的特殊光合机制2016年10月,国际学术权威刊物Nature出版集团旗下子刊《Nature Plants》发表了英国布里斯托大学Heather Whitney研究团队的一

这个团队在光合作用捕光复合物研究中取得进展!

  经过我们公众号iPlants的查阅,发现以中国科学院生物物理所常文瑞院士为学术带头人,柳振峰研究组、章新政研究组与常文瑞/李梅研究组合作的团队已经在光合作用的捕光复合物研究中取得一系列重大的进展,实属了不起!其中包括以下成果:  1.2004年3月18日,Nature以封面彩图的形式发表来自中国

光合作用基础知识:原初反应(图)

光合作用的实质是将光能转变成化学能。根据能量转变的性质,将光合作用分为三个阶段(表4-1):1.光能的吸收、传递和转换成电能,主要由原初反应完成;2.电能转变为活跃化学能,由电子传递和光合磷酸化完成;3.活跃的化学能转变为稳定的化学能,由碳同化完成。原初反应(primary reaction)是指从

李小波博士等发现光合作用所需的多个候选基因

  莱茵衣藻(Chlamydomonas reinhardtii)是一种非常有价值的真核模式生物,被广泛用于与光合作用、呼吸作用、脂类合成、细胞运动(生物鞭毛)、非生物胁迫等生物学过程相关的功能研究(图1)【1】。长期以来,通过同源重组将外源基因插入是敲除莱茵衣藻基因的主要方式,与外源基因的随机插入

氮气浓缩仪是光反应的阶段的链接仪器

叶绿体是植物细胞内重要、普遍的质体,它是进行光合作用的细胞器。叶绿体利用其叶绿素将光能转变为化学能,把CO2与水转变为糖。叶绿体是世界上成本低、创造物质财富多的生物工厂光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来

S对农作物叶绿素和叶面积增长的影响

S在作物光合作用中具有重要作用。S以S脂方式组成叶绿体基粒片层;是铁氧还蛋白的重要组分,在光合作用及氧化物的还原中起电子转移作用。叶片中的有机S主要集中在叶肉细胞的叶绿体蛋白上,所以S的供应水平对叶绿体的形成和功能的发挥有重要影响,能显着提高叶绿素含量。施S能增加玉米的叶面积和比叶重,提高功能叶片中

叶绿素测定仪分析春玉米叶绿素含量与光合速率的关系

  叶绿素的含量对叶片生理活性变化有着十分重要的影响,是其重要指标之一,这与叶片的光合作用的能力有着十分紧密的关系,所以对叶绿素含量进行测定分析,可以作为提高作物产量的理论基础。对于夏玉米叶片的叶绿素组成及含量的相关规律已经有所研究,在此基础上对春玉米的叶绿素含量的变化进行系统的研究,借此数据提高植

用真空渗入法测定环境因子对光合作用的影响

绿色植物的叶绿体  是光合作用进行的场所,叶绿体色素是进行光合作用光能吸收、传递与转换的主要物质,与作物光合作用及产量形成关系密切。不同作用作物叶绿素的含量与组成有差异,栽培措施、营养状况等条件的改变都会通过影响叶绿体色素的状况而影响光合。了解叶绿体色素的组成与含量,无论对于深入理解光合作

叶绿素测定仪分析春玉米叶绿素含量与光合速率的关系

叶绿素的含量对叶片生理活性变化有着十分重要的影响,是其重要指标之一,这与叶片的光 合作用的能力有着十分紧密的关系,所以对叶绿素含量进行测定分析,可以作为提高作物产量的理论基础。对于夏玉米叶片的叶绿素组成及含量的相关规律已经有所 研究,在此基础上对春玉米的叶绿素含量的变化进行系统的研究,借此数据提高植

用光合有效辐射计探究植物光合作用的影响因素

    通常情况下,光照强度、温度和CO2浓度是影响光合作用的主要环境因素,但偶尔也会出现光合辐射,这又是什么呢?它指的是绿色植物在进行光合作用过程中,吸收的太阳辐射中使叶绿素分子呈现激发状态的那部分能量。而光合有效辐射计就是专门用于测定的理想仪器。为研究某植物光合作用

美合成“人造森林”纳米系统

  就在媒体大肆喧嚣大气中二氧化碳含量已达到300万年来最高值的当下,美国能源部(DOE)劳伦斯伯克利国家实验室的科学家们在最新一期《纳米快报》上报告说,他们在开发碳中和可再生能源技术——首个全集成人工光合作用纳米系统上取得了重要进展。   主持该项研究的伯克利实验室材料科学部化学家杨培栋(音译)

美研发出首个全集成人工光合作用纳米系统

  据物理学家组织网5月17日(北京时间)报道,就在媒体大肆喧嚣大气中二氧化碳含量已达到300万年来最高值的当下,美国能源部(DOE)劳伦斯伯克利国家实验室的科学家们在最新一期《纳米快报》上报告说,他们在开发碳中和可再生能源技术——首个全集成人工光合作用纳米系统上取得了重要进展。   主持该项研究

论光合作用与光合有效辐射的关系

光合作用指含有叶绿体的绿色植物和某些细菌,在可见光的照射下,经过光反应和碳反应(旧称暗反应),利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。 光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是

模块式植物表型分析技术方案——拟南芥UV胁迫的响应机制

植物面对各种生物和非生物胁迫时,会调整它们的响应机制来优化发育和适应程序。UV辐射作为一种环境因子,会影响植物的光合过程并触发细胞死亡。华沙生命科学大学的Anna Rusaczonek评估了红/远红光感受器光敏色素A和光敏色素B在拟南芥UV胁迫响应中的作用。通过测量相关突变株的CO2同化、

蛋白质组学揭示油菜卷叶机理(一)

题目:Histological, Physiological, and Comparative Proteomic Analyses Provide Insights into Leaf Rolling in Brassica napus期刊:Journal of Proteome Research

116份芝麻种质资源叶绿素含量多样性的比较分析

芝麻是我国重要的油料作物之一,也是传统的优势出口创汇作物,在国家食用油供给安全和种植业结构调整中 占有重要地位。芝麻在我国分布广泛,各省市均有种植,其种质资源拥有量占全世界总数的1/4,多样性十分丰富。芝麻种质资源的多样性研究已经在表型性状、 同工酶和DNA分子多态性等方面开展,但是基于单一性状的多

光合电子传递 (photosynthetic electron transport)

光合作用中,受光激发推动的电子从 H2 O到辅酶Ⅱ( NADP )的传递过程。光合色素吸收光能后,把能量聚集到反应中心——一种特殊状态的叶绿素 a分子,引起电荷分离和光化学反应。一方面将水氧化,放出氧气;另一方面把电子传递给辅酶Ⅱ( NADP ),将它还原成 NADPH,其间经过一系列中间(电

植物光合测定仪应该如何选?

   植物光合作用测定仪是用来研究关注植物进行光合作用的生理生命活动的重要仪器设备,这在高等院校的科学研究过程中是非常重要的,同时对种植农作物也是非常有帮助的。光合作用是植物生存必备的生命活动,植物的叶片里有叶绿素,在光作用的条件下,吸收CO2,转化能量,为植物自身提供有机化合物,还释放氧气,参与大

植物光合测定仪应该如何选?

植物光合作用测定仪是用来研究关注植物进行光合作用的生理生命活动的重要仪器设备,这在高等院校的科学研究过程中是非常重要的,同时对种植农作物也是非常有帮助的。光合作用是植物生存必备的生命活动,植物的叶片里有叶绿素,在光作用的条件下,吸收CO2,转化能量,为植物自身提供有机化合物,还释放氧气,参与大气环境

叶绿素检测仪分析南瓜叶绿素含量与净光合速率的关系

南瓜作为一种光合效率极高的植物而言,其叶绿素含量已经成为南瓜生产过程的一项重要生 理指标。叶绿素含量与净光合合速率的关系素有研究,但是关于南瓜叶绿素的研究报道却是比较少见的。对南瓜叶片叶绿素含量规律进行了较为系统的研究,同时观 察叶绿素含量与光合速率之间的关系,找出规律,为以后的科研及栽培提供理论依

一文详解蓝细菌

  旧名为蓝藻(blue algae)或蓝绿藻(blue—green algae),是一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿素a,但不含叶绿体(区别于真核生物的藻类)、能进行产氧性光合作用的大型单细胞原核生物。与光合细菌区别是:光合细菌(红螺菌)进行较原始的光合磷酸化作用,反应过程不放氧,

蛋白质组学在植物科学研究中的应用

1 植物群体遗传蛋白质组学 1.l 遗传多样性蛋白质研究基于基因组学的一些遗传标记,如RAPD(Random Amplified Polymorphic DNA)、RFLP(Restriction Fragment Length Polymorphism)、SSR(Simple Sequen