超宽禁带半导体新进展推动氧化镓功率器件规模化应用
中国科学院上海微系统与信息技术研究所研究员欧欣课题组和西安电子科技大学郝跃课题组教授韩根全合作,在氧化镓功率器件领域取得新进展。该研究成果于12月10日在第65届国际微电子器件顶级会议——国际电子器件大会(International Electron Devices Meeting, IEDM)以口头报告形式正式发布:First Demonstration of Waferscale Heterogeneous Integration of Ga2O3 MOSFETs on SiC and Si Substrates by Ion-Cutting Process。这是我国(包括港、澳、台)在IEDM会议上发表的首篇超宽禁带半导体领域的论文,说明我国也成为氧化镓研究领域的重要创新国家之一。 氧化镓作为第三代宽带隙半导体材料,具有禁带宽度更大、击穿场强更高的优势。Ga2O3 是带隙最大的宽禁带半导体材料之一,对于大功率、高频装......阅读全文
宽带隙半导体材料的特性
氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。广
宽带隙半导体材料的特征
氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。广
厦大研发新型宽带隙半导体材料--促深紫外光子学发展
厦大自主研发的新型宽带隙半导体材料为深紫外光子学的发展提供了新的思路和方向。它的“秘诀”在于材料纯度和结构质量高,通过其中激子和光子的相互转化特性可以轻松实现深紫外光的发射,从而大大提升激光器件的发光能效。近期,相关研究成果刊登在《自然》出版集团旗下的在线开放刊物《科学报道》上。 据了解,
氧化镓半导体器件领域研究取得重要进展
12日,记者从中国科学技术大学获悉,日前在美国旧金山召开的第68届国际电子器件大会(IEEE IEDM)上,中国科大国家示范性微电子学院龙世兵教授课题组两篇关于氧化镓器件的研究论文(高功率氧化镓肖特基二极管和氧化镓光电探测器)被大会接收。 IEEE IEDM是一个年度微电子和纳电子学术会议,是
氧化镓半导体器件领域研究取得重要进展
原文地址:http://news.sciencenet.cn/htmlnews/2022/12/491041.shtm 科技日报合肥12月12日电 (记者吴长锋)12日,记者从中国科学技术大学获悉,日前在美国旧金山召开的第68届国际电子器件大会(IEEE IEDM)上,中国科大国家示范性微电子学
备受看好的氧化镓材料是什么来头?-(一)
日前,据日本媒体报道,日本经济产业省(METI)计划为致力于开发新一代低能耗半导体材料“氧化镓”的私营企业和大学提供财政支持。报道指出,METI将为明年留出大约2030万美元的资金去资助相关企业,预计未来5年的资助规模将超过8560万美元。 众所周知,经历了日美“广场协定”的日本
超宽禁带半导体新进展-推动氧化镓功率器件规模化应用
中国科学院上海微系统与信息技术研究所研究员欧欣课题组和西安电子科技大学郝跃课题组教授韩根全合作,在氧化镓功率器件领域取得新进展。该研究成果于12月10日在第65届国际微电子器件顶级会议——国际电子器件大会(International Electron Devices Meeting, IEDM)
欧欣、郝跃课题组超宽禁带半导体异质集成研究获进展
中国科学院上海微系统与信息技术研究所研究员欧欣课题组和西安电子科技大学郝跃课题组教授韩根全合作,在氧化镓功率器件领域取得新进展。该研究成果于12月10日在第65届国际微电子器件顶级会议——国际电子器件大会(International Electron Devices Meeting, IEDM)
我科学家首创出新型太阳能电池
日前,厦门大学物理与机电工程学院康俊勇教授课题组研发成功一种新型太阳能电池,即将氧化锌和硒化锌两种宽带隙半导体材料用作太阳能电池,从而大大稳定了太阳能电池的性能并使其寿命延长。这也是国际上首次实现了宽带隙半导体在太阳能电池中的应用。近期,英国皇家化学学会的《材料化学》杂志发表了这一成果,在国际上
CMIC:几种主要半导体材料的应用与发展现状
20世纪中期,单晶硅和半导体晶体管的发明及硅集成电路的研制成功,引发了电子工业革命;20世纪70年代初,石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术的跨越式发展并逐步形成高新技术产业……随着科技发展,半导体材料越来越多,其在各行业中的应用,深刻地改变着人们的生活方式。那么,现阶段几
氮化镓半导体材料的应用前景
对于GaN材料,长期以来由于衬底单晶没有解决,异质外延缺陷密度相当高,但是器件水平已可实用化。1994年日亚化学所制成1200mcd的 LED,1995年又制成Zcd蓝光(450nmLED),绿光12cd(520nmLED);日本1998年制定一个采用宽禁带氮化物材料开发LED的 7年规划,其目标是
青岛能源所在超宽带隙共轭聚合物研究中取得进展
有机半导体材料主要应用于有机场效应晶体管(OFET)、本体异质节太阳能电池(BHJ-OPV)、有机电致发光材料(OLED)以及传感器等,其结构便于设计、性能易于调控,以及可用于制备柔性电子器件等独特优势,吸引了科学界的广泛关注,是未来国家材料以及能源发展的重要方向之一。含有内酰胺官能团的异靛蓝分
最纯砷化镓半导体面世
美国普林斯顿大学研究人员在《自然·材料》杂志报告称,他们研制出了世界上迄今最纯净的砷化镓。该砷化镓样品的纯度达到每100亿个原子仅含有一个杂质,纯度甚至超过了用于验证一千克标准的世界上最纯净的硅样品。 砷化镓是一种半导体,主要用于为手机和卫星等提供电力。新研究得到的砷化镓样品呈正方形,边长与一
氮化镓半导体材料的优点与缺陷
①禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强;②导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和);③GaN易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁
氮化镓半导体材料新型电子器件应用
GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效
氮化镓半导体材料光电器件应用介绍
GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批
宽带隙太阳能电池材料及其叠层器件研究获进展
聚合物太阳能电池具有质量轻、柔性及低成本等独特的优势,近10多年来受到世界各国科学工作者的广泛关注。如何在拓宽材料分子吸收的同时,保持高开路电压是有机光伏领域一个重要研究内容。采用叠层器件结构将两个具有不同吸收范围的单结电池串联起来,可以同时实现宽吸收光谱与高开路电压,是提升有机太阳能电池效率的
宽带隙太阳能电池材料及其叠层器件研究获进展
聚合物太阳能电池具有质量轻、柔性及低成本等独特的优势,近10多年来受到世界各国科学工作者的广泛关注。如何在拓宽材料分子吸收的同时,保持高开路电压是有机光伏领域一个重要研究内容。采用叠层器件结构将两个具有不同吸收范围的单结电池串联起来,可以同时实现宽吸收光谱与高开路电压,是提升有机太阳能电池效率的
下一代半导体的宽与窄
随着以氮化镓、碳化硅为代表的第三代半导体步入产业化阶段,对新一代半导体材料的探讨已经进入大众视野。走向产业化的锑化物,以及国内外高度关注的氧化镓、金刚石、氮化铝镓等,都被视为新一代半导体材料的重要方向。从带隙宽度来看,锑化物属于窄带半导体,而氧化镓、金刚石、氮化铝属于超宽禁带半导体。 超宽禁带
氮化镓半导体材料的反应方程式
GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,其可逆的反应方程式为:Ga+NH3=GaN+3/2H2生长GaN需要一定的生长温度,且需要一定的NH3分压。人们通常采用的方法有常规MOCVD(包括APMOCVD、LPMOCVD)、等离子体增强MOCVD(PE—MOCVD
王占国:半导体材料将走向“纳米化”
半导体照明5年后进入千家万户、上百位的密码几秒钟就计算出来、人类进入变幻莫测的量子世界……日前,在中国科技馆数百位参加科学讲坛的听众前,中科院院士、中科院半导体研究所研究员王占国展示了半导体材料的惊人魅力。 半导体是介于导体和绝缘体之间的材料。自1947年12月23日正式发明后,在家电、通
王占国院士:半导体材料将走向“纳米化”
半导体照明5年后进入千家万户、上百位的密码几秒钟就计算出来、人类进入变幻莫测的量子世界……日前,在中国科技馆数百位参加科学讲坛的听众前,中科院院士、中科院半导体研究所研究员王占国展示了半导体材料的惊人魅力。 半导体是介于导体和绝缘体之间的材料。自1947年12月23日正式发明后,
氮化镓的的结构和应用特点
氮化镓是一种无机物,化学式GaN,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性
拉伸二硫化钼晶体造出能隙可变半导体
这张放大1万倍的图片显示,一个电子器件上雕刻出了高低不平的“山峰”和“山谷”,铺在上面的二硫化钼经过拉伸后,形成了一种拥有可变能隙的人工晶体。 近日,美国斯坦福大学一科研团队首次通过拉伸二硫化钼的晶体点阵,“扯”出能隙可以变化的半导体。利用这种半导体,科学家有望制造出能够吸收更多光能的太阳能
挪威研制最新半导体新材料砷化镓纳米线
挪威科技大学的研究人员近日成功开发出一种新型半导体工业复合材料“砷化镓纳米线”,并申请了技术ZL,该复合材料基于石墨烯,具有优异的光电性能,在未来半导体产品市场上将极具竞争性,这种新材料被认作有望改变半导体工业新型设备系统的基础。该项技术成果刊登在美国科学杂志纳米快报上。 以Helge W
射频前端
今天,我们将带大家认识一下 5G 的射频技术。 5G 愿景的真正实现,还需要更多创新。网络基站和用户设备(例如:手机)变得越来越纤薄和小巧,能耗也变得越来越低。为了适合小尺寸设备,许多射频应用所使用的印刷电路板(PCB)也在不断减小尺寸。因此,射频应用供应商必须开发新的封装技
探索射频前端技术
引言:2017 年,Qorvo 出版了第 1 版《5G 射频技术 For Dummies》。该书以通俗易懂的语言,帮助业界许多人士掌握了一些围绕 5G 技术的复杂概念。在之前,我们也做了《科普丨重新认识 5G》、《科普丨了解 5G 核心实现技术》、《科普丨发现 5G 的不同之处》、《科普丨介绍
中国科大广谱分解水制氢的光催化剂研究获进展
氢能是一种非常清洁且可储存运输的可再生能源,利用太阳能分解水制备氢气已成为一种备受关注的清洁新能源技术。无机半导体材料是目前应用最广的光催化活性物质,通常高光催化活性的半导体都具有宽带隙,使其只能吸收紫外光等短波太阳光,而紫外光只占太阳光全谱的5%左右,造成了充分利用太阳能的困难。因此,非常有必
想监测一座正在喷发的火山吗这种传感器可做到这一点
用于监测极端环境的传感器需要在高温和恶劣的条件下提供可靠的测量。现在,研究人员已经开发出一种压电传感器,可以在喷发的岩浆(地球上最热的熔岩类型)的温度下工作。航空航天、能源、交通和国防--所有这些极端环境在开发监测物理和机械参数(如压力、力、应变和加速度)的传感器时构成了一种挑战。为了在这些环境中运
下一代电力电子技术将成为美国的就业稻草
1月15日,美国总统奥巴马在北卡罗来纳州立大学高调宣布,以该校为核心建立“下一代电力电子技术国家制造业创新研究所”(以下简称“电力电子技术创新中心”)。作为规划中的国家先进制造业创新中心之一,以下一代电力电子技术和设备制造为研发对象的国家级制造业创新中心正式进入人们的视线。 为振兴美国制造