JACS:()MitrephoroneB的CH键氧化合成()MitrephoroneA

ent-trachylobane类天然产物mitrephorone A、B、C(1-3)与二萜类 ent-atiserene、ent-beyerene和ent-kaurene在结构上有一定的关联,但前者的氧化模式比较罕见,在合成上也极具挑战性(图1)。初步的生物活性筛选显示,1-3具有中等的抗微生物和抗癌活性。可能的生源合成始于香叶基香叶基焦磷酸酯(GGPP,C20)的环化反应,生成ent-pimarenyl碳正离子4。Tantillo阐明了4转化为ent-trachylobane骨架5的机理(J. Am. Chem. Soc., 2010, 132, 5375–5386),并且排除了先前假定的二级碳正离子的过程,5在酶催化下合成mitrephorone B(2),它是一个关键的中间体,可以选择性地氧化生成1和3。在mitrephorone B(2)的形成过程中,无论是先氧化反式十氢萘骨架,还是先将C19位官能团化,都可以得......阅读全文

JACS:()Mitrephorone-B的CH键氧化合成()Mitrephorone-A

  ent-trachylobane类天然产物mitrephorone A、B、C(1-3)与二萜类 ent-atiserene、ent-beyerene和ent-kaurene在结构上有一定的关联,但前者的氧化模式比较罕见,在合成上也极具挑战性(图1)。初步的生物活性筛选显示,1-3具有中等的抗微

无“键”不摧:Science报道低温催化甲烷CH键活化反应

  碳氢(烃类)化合物作为石油化工产业的核心研究对象,除了用作化石燃料成为当今社会的主要能源物质,还可以应用于工业生产在制备其他化学品及聚合材料方面展现多重用途。其中甲烷(CH4)是最简单的碳氢化合物,在地球上储存量巨大。作为天然气的主要成分,它具有热值高、成本低、安全无毒等特点。相比于煤炭、石油等

一支穿云箭,远程“射中”CH键

  在射箭比赛中,运动员定睛凝神,克服各种困难,拉弓放箭,一箭命中靶心。在有机合成研究领域,数以万计的科学家天天埋头钻研,为的就是能准确地对各种化学键进行切断和重组。日前,中国科学院福建物质结构研究所结构化学国家重点实验室李纲研究组,实现了首例羧基导向的远程C(sp2)-H键的选择性活化。  切断C

JACS:研究发现金属间最短化学键

美国化学家近日创造了一项新的世界纪录,他们发现了迄今为止金属间最短的化学键,这一化学键产生于两个铬原子之间。相关论文发表于《美国化学学会会志》(JACS)上。  图片说明:一种新分子中两个铬原子间的化学键长度创造了最短纪录。(图片来源:Klaus Theopold)  这一最短距离究竟是多少

大连化物所发现光催化低温CH键活化反应

  近日,中国科学院大连化学物理研究所分子反应动力学国家重点实验室副研究员马志博、中科院院士杨学明团队,与华中科技大学教授潘明虎团队合作,发现了氧化钛表面低温光催化C-H键断键反应,并在单分子层面上对反应机理进行解释。  C-H键是有机化学中重要的一类化学键,与其断键及进一步合成相关的化学反应常常需

MacMillan组JACS:C(sp3)F键的形成

  氟烷基化合物广泛应用于医药、农用化学、材料等领域。目前已有的构建C(sp3)-F键的方法主要有醇的脱氧氟化、烯烃的氢氟酸化、酸的脱羧氟化和自由基的C-H键氟化,通过这些方法,可以将一些常见的有机官能团转化为氟取代基团,然而目前仍未报道过将烷基溴化物转化为烷基氟化物的通用方法。长期以来,硅自由基被

广州生物院CH键官能化反应研究取得新进展

  吡啶[1,2-a]苯并咪唑类杂环是一类具有抗菌,抗病毒,抗肿瘤等多种生物活性的分子骨架。但传统的合成方法存在合成路线长、底物多样性差、产率低等诸多缺点。中国科学院广州生物医药与健康研究院朱强博士带领其团队利用C-H键活化反应合成含氮杂环取得重要进展,相关成果发表在国际化学类期刊《美

天津工生所在酶催化CH键活化研究方面取得进展

在化学合成和药物开发领域,半缩醛是一类重要的有机合成中间体,其结构中同一个碳原子上连有一个羟基、一个烷氧基和一个氢原子。传统化学合成中,半缩醛化合物的合成主要局限于醇和醛/酮之间的加成反应,或通过金属催化剂还原内酯获得。此外,合成手性半缩醛立体选择性控制也是一个挑战,通常需要设计特殊的手性配体催化剂

兰州化物所发展出选择性的CH键和CN键活化新方法

  中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室研究人员发展了C-H键活化和C-N键活化的新方法,利用简单的过渡金属为催化剂,高选择性地实现了含氮杂环化合物直接氨基化和烯基化。   研究人员采用铜作为催化剂,分子氧为氧化剂,发展出了噁唑与三级胺直接氧化胺化的有效方法。该方法的催化体

兰州化物所CH键活化/羰基化合成苯乙酸取得突破

  C-H键活化,特别是无导向基团的简单芳烃类大宗化学品的sp3C-H键活化是现代有机化学的一大挑战。发展新颖的sp3C-H键活化策略应用于该类化合物的功能化具有重要的学术价值和应用前景。   近日,在中科院百人计划和国家自然科学基金的支持下,中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点

化学家有了“分子编辑”氮杂芳烃CH键工具包

美国斯克利普斯研究所和加利福尼亚大学洛杉矶分校的化学家开发出一种精确灵活的方法修饰一类广泛的化合物。这类化合物被称为双环氮杂芳烃,通常用于构建药物分子。这种强大的新方法通常可提供更简单、更灵活的分子设计,使化学家能够合成无数以前遥不可及的化学产品,包括潜在的重磅药物。近日,相关研究成果发表于《自然》

上海有机所等在sp3-CH键精准转化研究中取得进展

  中国科学院上海有机化学研究所金属有机化学国家重点实验室刘国生课题组发展了复杂烯烃的烯丙位碳氢键精准(包括高位点、高对映体选择性)氰化反应,并与香港科技大学林振阳课题组合作,通过实验和理论计算相结合,揭示了金属调控氮自由基选择性攫氢的新机制。该工作于10月24日在《自然》(Nature)期刊在线发

大化所在三价铑催化的CH键活化领域取得新进展

  近期,中科院大连化学物理研究所李兴伟研究员带领的团队在三价铑催化的C-H键活化领域取得新进展,相关研究结果发表在《德国应用化学》(Angew. Chem., Int. Ed. 2012, 51, 12348-12352)上。   杂环如吡啶环被广泛应用于有机合成,药物开发和材料开发等领域。

氨基菲啶配体铱催化剂实现烷基CH键的温和非定向硼化

在化学合成领域,烷基C-H键的催化硼化历来被视为一项极具挑战性的任务。这种反应通常需要在高温条件下进行,或者需要大量的底物,原因在于烷基C-H键的反应性相对较低。然而,最近的一项创新研究为这一难题提供了解决方案,展示了一种全新的铱催化系统,这一系统使用2-氨基菲啰啉作为配体,能够在几乎没有诱导期的情

广州生物院用铜催化CH键活化合成二苯并呋喃及其衍生物

  二苯并呋喃是许多活性药物分子和天然产物的核心结构单元。但是传统的合成方法存在合成路线长,原子利用率低等诸多缺点。中科院广州生物医药与健康研究院朱强博士研究组利用铜催化的C−H键活化方法,成功合成了一系列的二苯并呋喃及其衍生物,相关成果近期发表在美国化学会期刊《有机化学快报》上 (Org. Let

反应提速1000000倍!张新星团队质谱分析成果登上《JACS》

  微液滴质谱探索自发超快的C-H/N-H氧化偶联反应  近日,南开大学张新星研究员在微液滴质谱分析领域取得了又一重要突破,他们在室温下将一系列反应底物的水溶液喷雾成微液滴,生成了一系列的C-H/N-H氧化偶联产物,这些产物以自发和超快的方式惊人地产生。与相同的体相反应相比,反应速度加快了6个数量级

南开大学张新星团队再发JACS:微液滴质谱探索自发超快的CH/NH氧化偶联反应

  近日,南开大学张新星研究员在微液滴质谱分析领域取得了又一重要突破,他们在室温下将一系列反应底物的水溶液喷雾成微液滴,生成了一系列的C-H/N-H氧化偶联产物,这些产物以自发和超快的方式惊人地产生。与相同的体相反应相比,反应速度加快了6个数量级。基于关键自由基中间体的质谱分析,他们认为微液滴表面存

JACS:揭开细菌的“致命要害”

  耐药菌正迅速成为21世纪的一个大问题。现在,哥本哈根大学的研究人员已经发现了细菌一个以前未知的弱点——一个“致命弱点”。他们的这一发现——细菌能量代谢的一个关键步骤,可能是开发一种全新形式抗生素的第一步。  哥本哈根大学化学系和纳米科学中心副教授Nikos hatzakis,连同英国利兹大学的副

共价键的价键理论

价键理论是基于路易斯理论电子配对思想发展起来的共价键理论。价键理论将应用量子力学解决氢分子问题的成果推广到其他共价化合物中,成功解释了许多分子的结构问题。海特勒-伦敦法沃尔特·海特勒(W.H.Heitler)和弗里茨·伦敦(F.London)在运用量子力学方法处理氢气分子的过程中,得到了分子能量E和

价键理论共价键理论

价键理论是基于路易斯理论电子配对思想发展起来的共价键理论。价键理论将应用量子力学解决氢分子问题的成果推广到其他共价化合物中,成功解释了许多分子的结构问题。海特勒-伦敦法沃尔特·海特勒(W.H.Heitler)和弗里茨·伦敦(F.London)在运用量子力学方法处理氢气分子的过程中,得到了分子能量E和

大连化物所实现室温下电催化甲烷和氧气转化制甲酸

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究中心研究员邓德会以及副研究员崔晓菊和于良等,在甲烷室温电催化转化的研究中取得进展。该研究实现了由高压-电芬顿驱动的甲烷与氧气室温高效催化转化制甲酸新过程。  甲烷与氧气直接催化转化制高附加值含氧化学品,是天然气资源高

大连化物所单原子催化剂研究取得新进展

  近日,我所航天催化与新材料研究中心张涛院士和王爱琴研究员团队在单原子催化剂研究领域取得新进展,制备出单原子分散的Fe-N-C催化剂,并将其应用于C-H键选择性氧化反应中获得了优异的活性和选择性。特别是利用包括X射线吸收光谱和穆斯堡尔谱在内的多种表征技术,首次证明了中自旋Fe-N5结构具有最高的催

大连化物所实现室温下电催化甲烷和氧气转化制甲酸

近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究中心研究员邓德会以及副研究员崔晓菊和于良等,在甲烷室温电催化转化的研究中取得进展。该研究实现了由高压-电芬顿驱动的甲烷与氧气室温高效催化转化制甲酸新过程。甲烷与氧气直接催化转化制高附加值含氧化学品,是天然气资源高值化利用

二硫键是共价键还是非共价键

是两个硫原子之间形成的共价键,一般指多肽链中的两个半胱氨酸残基侧链的硫原子之间形成的共价键。二硫键(disulfide bond)是连接不同肽链或同一肽链中,两个不同半胱氨酸残基的巯基的化学键。二硫键是比较稳定的共价键,在蛋白质分子中,起着稳定肽链空间结构的作用。二硫键数目越多,蛋白质分子对抗外界因

JACS:“量子点”助力RNA干扰技术

15年前,科学家发现了一种阻碍基因表达路径的方法——RNA干扰(简称RNAi)。这项荣膺2006年诺贝尔奖的发现承载着医学科学的迫切希望,它可以通过沉默基因来阻碍特定蛋白制造,从而达到疾病治疗的效果。不过到目前为止,RNA干扰技术很难在活体细胞中取得应用。 图片说明:由不同尺寸的相同物质构成的

我所实现室温下电催化甲烷和氧气转化制甲酸

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202403/t20240308_7021154.html近日,我所催化基础国家重点实验室能源与环境小分子催化研究中心(509组群)邓德会研究员、崔晓菊副研究员和于良副研究员等在甲烷室温电催化转化的研究中取得新进展,实现了由

共价键按成键方式分类

σ键(sigma bond)由两个原子轨道沿轨道对称轴方向相互重叠导致电子在核间出现概率增大而形成的共价键,叫做σ键,可以简记为“头碰头”。σ键属于定域键,它可以是一般共价键,也可以是配位共价键。一般的单键都是σ键。原子轨道发生杂化后形成的共价键也是σ键。由于σ键是沿轨道对称轴方向形成的,轨道间重叠

共价键按成键过程分类

1、一般共价键一般共价键有时也称“正常共价键”,是为了和“配位共价键”进行区分时使用的概念,指成键时两个原子各自提供一个未成对电子形成的共价键。2、配位共价键(coordinate covalent bond)配位共价键简称“配位键”是指两原子的成键电子全部由一个原子提供所形成的共价键,其中,提供所

共价键按成键过程分类

1、一般共价键一般共价键有时也称“正常共价键”,是为了和“配位共价键”进行区分时使用的概念,指成键时两个原子各自提供一个未成对电子形成的共价键。2、配位共价键(coordinate covalent bond)配位共价键简称“配位键”是指两原子的成键电子全部由一个原子提供所形成的共价键,其中,提供所

关于共价键的键型分类

  成键的两个原子间的连线称为键轴. 按成键与键轴之间的关系,共价键的键型主要为两种:  a)σ 键  σ 键特点:将成键轨道,沿着键轴旋转任意角度,图形及符号均保持不变. 即键轨道对键轴呈圆柱型对称,或键轴是n重轴。可记为“头碰头”。  b) π键  π键特点:成键轨道围绕键轴旋转180°时,图形