科学家揭示植物内质网相关蛋白质降解机制

植物在整个生活史中面临多种非生物和生物胁迫,一直以来科学家对于植物如何响应环境胁迫并协调生长发育和胁迫响应之间的关系进行着系统而深入的研究。蛋白质泛素化修饰是一种重要的蛋白质翻译后修饰,主要通过影响蛋白稳定性、活性、亚细胞定位及蛋白之间的相互作用等在植物生长发育和适应各种环境的过程中发挥重要功能。 内质网相关蛋白质降解(ERAD)系统通过内质网膜上的泛素耦联酶(E2)和泛素连接酶(E3)组分将非正确折叠或修饰的蛋白质进行泛素化修饰,并将这些被泛素化修饰的蛋白转运至细胞质中由26S蛋白酶体识别和降解。中国科学院遗传与发育生物学研究所谢旗研究组长期致力研究植物泛素化修饰过程及其在植物与环境互作中的调控机制研究,近十年来在植物ERAD领域发表多项开创性工作。鉴定了ERAD关键组分HRD3A(Liu et al., Cell Research, 2011)及E2蛋白UBC32(Cui et al., The Plant Cell,......阅读全文

科学家揭示植物内质网相关蛋白质降解机制

  植物在整个生活史中面临多种非生物和生物胁迫,一直以来科学家对于植物如何响应环境胁迫并协调生长发育和胁迫响应之间的关系进行着系统而深入的研究。蛋白质泛素化修饰是一种重要的蛋白质翻译后修饰,主要通过影响蛋白稳定性、活性、亚细胞定位及蛋白之间的相互作用等在植物生长发育和适应各种环境的过程中发挥重要功能

遗传发育所:植物内质网相关蛋白质降解机制综述文章

  植物在整个生活史中面临多种非生物和生物胁迫,一直以来科学家对于植物如何响应环境胁迫并协调生长发育和胁迫响应之间的关系进行着系统而深入的研究。蛋白质泛素化修饰是一种重要的蛋白质翻译后修饰,主要通过影响蛋白稳定性、活性、亚细胞定位及蛋白之间的相互作用等在植物生长发育和适应各种环境的过程中发挥重要功能

降解植物生物质的厌氧菌

  近日,美国科学家发现了一种可降解植物生物质的厌氧菌,分解出的糖分可用作生物燃料原料。迄今为止,这是科学家发现的首例可以溶解那些难于分解的植物成分——如纤维素、糖类和木质素等的厌氧菌。   生物质通常需要在强酸和高温条件下才能被分解成可用的生物燃料原料。然而,当前工业预处理过程效率低下、成本高昂

蛋白质代谢的降解蛋白

  1、内源蛋白降解速度不同,一般代谢中关键酶半衰期短,如多胺合成的限速酶-鸟氨酸脱羧酶半衰期只有11分钟,而血浆蛋白约为10天,胶原为1000天。体重70千克的成人每天约有400克蛋白更新,进入游离氨基酸库。  2、内源蛋白主要在溶酶体降解,少量随消化液进入消化道降解,某些细胞器也有蛋白酶活性。内

蛋白质测序——Edman降解法

蛋白质测序可用于: (1)鉴定蛋白质; (2)表征蛋白质翻译后修饰。 (3)分析蛋白质一级结构与功能的关系。实验方法原理主要有质谱法,利用蛋白质测序仪进行测序以及利用蛋白质对应DNA或mRNA进行间接测序。传统的蛋白质测序实验一般包括以下步骤:1.肽链的拆开和分离;2.测定蛋白质分子中多肽链的数目;

蛋白质降解作用的发现

  食物中的蛋白质要经过蛋白质降解酶的作用降解为多肽和氨基酸被人体吸收的过程叫做蛋白质降解。  2004年10月6日瑞典皇家科学院宣布,将2004年诺贝尔化学奖授予以色列和美国的三名科学家,以表彰他们发现了泛素调节的蛋白质降解的作用。  蛋白质是自然界中最复杂、最令人迷惑的物质之一,它与生命有着特别

泛素化的蛋白质降解介绍

  泛素-蛋白酶体途径是先发现的,也是较普遍的一种内源蛋白降解方式。需要降解的蛋白先被泛素化修饰,然后被蛋白酶体降解。  不过后来又发现,并非所有泛素化修饰都会导致降解。有些泛素化会改变蛋白的活性,导致其他的生物效应,如DNA损伤修复,机体免疫应答等。

蛋白质的降解的相关介绍

   对于细胞来说,蛋白质降解有多种用途,包括去除分泌蛋白的N末端信号肽,对前体蛋白进行剪切以产生“成熟”蛋白等。细胞不需要的或受到损伤的非跨膜蛋白质一般由蛋白酶体来进行降解,而真核生物的跨膜蛋白则通过内体运送到溶酶体(动物细胞)或液泡(酵母)中进行降解。降解所生成的氨基酸分子可以被用于合成新的蛋白

蛋白质的酶促降解过程介绍

蛋白质是重要的营养素,人和动物摄食蛋白质用以维持细胞、组织的生长、更新和修补;产生酶、激素、抗体和神经递质等多种重要的生理活性物质,这是糖和脂类不可替代的。每克蛋白质在体内氧气分解产生4千卡能量。

蛋白质代谢的降解蛋白的介绍

  1、内源蛋白降解速度不同,一般代谢中关键酶半衰期短,如多胺合成的限速酶-鸟氨酸脱羧酶半衰期只有11分钟,而血浆蛋白约为10天,胶原为1000天。体重70千克的成人每天约有400克蛋白更新,进入游离氨基酸库。  2、内源蛋白主要在溶酶体降解,少量随消化液进入消化道降解,某些细胞器也有蛋白酶活性。内

体外蛋白质降解的重要意义

  一是替代了体内细胞外的蛋白质降解。通常人们食用蛋白质食物,需经人体消化系统进行消化,即蛋白质降解,降解成氨基酸和小肽后,通过人体小肠吸收而被组 织利用。我们进行体外蛋白质降解,获得与人体降解的效果一样的营养物质,减少了人体肠胃降解蛋白质功能的负担,这对人体消化器官的养护以及防止衰老退化有 着重要

《Cell》揭示蛋白质降解调控机制

  蛋白质不能像钻石一样永久地存在。当它们耗尽之时,需要在细胞内将它们降解成氨基酸,然后再循环利用生成新的蛋白。来自洛克菲勒大学和霍华德休斯医学研究所的研究人员,揭示了细胞的蛋白质回收站——蛋白酶体(proteasome)处理不必要的和潜在毒性蛋白的一条新途径。这一研究发现对于肌萎缩、神经退行性疾病

关于蛋白质降解的发展意义介绍

  近年来,国际科技界研究发现,蛋白质经消化道酶促水解后,主要以 小肽的形式吸收,且比完全游离 氨基酸更易更快地被机体吸收和利用。这一发现的依据是,科 学家在对动物和 人体解剖中发现,他们的小肠刷状物上有大量的小肽停留。这一发现推翻了过去认为人体吸收蛋白质主要是以小肽的形式的这一理论,明确了人体吸

新方法可使植物塑料降解成肥料!

据最新消息,日本研究人员成功改良了以植物为原料的塑料材料,并成功将使用后的废弃物转化为肥料,再次利用。相关研究结果已经发表于英国《聚合物化学》杂志上。该研究团队采用高分子材料设计新方法,通过改良植物为原料的塑料材料,增强了塑料的稳定性和强度,并且能够降解为肥料,在环境保护和可持续发展方面具有积极的意

堆肥与堆肥降解测试设备-植物毒性试验

什么是堆肥堆肥是一种将有机物分解为可用物质的好氧微生物降解过程。它一般是嗜中温(15-45℃)微生物降解和嗜热(高于45℃)微生物降解两个阶段的结合,最终导致有机废物转化为稳定的具有农业价值的产品。目前,从堆肥规模上讲有两种主要形式:工业堆肥和家庭堆肥,这就是堆肥处理过程在世界各地被广泛地接受和采用

植物所凋落物光降解研究获进展

  随着全球经济飞速发展,人类活动不断向大气中排放大量颗粒物,导致大气气溶胶含量大幅度上升。大气气溶胶粒子能够吸收、散射太阳辐射,改变到达地球表面的太阳辐射量,太阳辐射的这些变化会显著地改变陆地生态系统的生物地球化学循环过程。以往关于太阳辐射变化的研究主要集中于其对植物光合作用以及植被生产力的影响,

开发基于植物细胞自噬的蛋白降解系统

近日,华南农业大学教授李发强/谢庆军课题组合作,首次报道了一套基于植物细胞自噬的蛋白降解系统,证明了靶向自噬的降解技术在植物研究中的可行性和发展潜力。相关研究在线发表于New Phytologist。 细胞自噬是真核生物中一种保守的代谢机制,通过溶酶体或液泡来降解细胞质中的多余蛋白质或受损细胞器

人造蛋白质能降解塑料瓶微粒

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511294.shtm 科技日报讯 (记者张梦然)西班牙巴塞罗那超级计算中心、催化和石油化学研究所与康普顿斯大学的研究团队联合开发了一种人造蛋白质,其能降解聚对苯二甲酸乙二醇酯(PET)微塑料和纳米塑

中加合作研究揭示蛋白质部分降解新机制

  中科院上海生物化学与细胞生物学研究所赵允研究组、张雷研究组在与加拿大多伦多大学教授Chi-chung Hui进行合作研究的过程中,揭示了一种新的蛋白质部分降解机制。相关研究成果日前在线发表于学术期刊《发育细胞》。   据介绍,蛋白质的泛素化降解作为一个重要的调控机制参与了细胞内的

细胞内蛋白质降解的主要途径有哪些

真核细胞内蛋白质的降解途径主要有三种,溶酶体途径、泛素化途径和胱天蛋白酶(caspase)途径。1、溶酶体途径:蛋白质在同酶体的酸性环境中被相应的酶降解,然后通过溶酶体膜的载体蛋白运送至细胞液,补充胞液代谢库。胞内蛋白:胞液中有些蛋白质的N端含有KFERQ信号,可以被HSC70识别结合,HSC70帮

植物组织蛋白质提取方法

1、植物组织蛋白质提取方法(summer)1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4小时)。3、用离心机离心8000rpm40min4℃或11100rpm20min4℃4、提取上清

植物所发现植物全基因组应答低温中信使RNA降解新机制

  信使RNA(mRNA)降解的动态模式是生物发育调控和适应环境的重要机制。但对植物mRNA降解在环境胁迫下的作用模式知之甚少。中科院植物研究所种康研究组通过RNA末端平行分析(parallel analysis of RNA ends)和转录组检测,并借助高通量测序手段揭示了单子叶模式植物二穗

生物可降解塑料降解机理与不同的降解环境下的降解能力

常见的生物可降解塑料与降解机理:参考文献:金琰,蔡凡凡,王立功等. 生物可降解塑料在不同环境条件下的降解研究进展. 生物工程学报, 2022, 38(5): 1784-1808.可降解塑料就是依靠存在于堆肥、淡水、海水、厌氧污泥和土壤中的各种细菌、真菌所分泌的各种酶,才被生物降解的。这些微生物和所分

我国学者破解浅水湖泊水体中植物残体降解机理

  水生植物是湖泊生态系统中的重要组分,在净化水质、恢复水体生态功能等方面发挥重要作用。随着全球气候变暖、湖泊富营养化、沼泽化过程以及生态修复技术的推广运用,促进了湖泊中浅水区域中挺水等高等水生植物的生长。每到秋冬季水生植物大量衰亡,植物残体分解过程对湖泊系统生源要素循环有重要影响,甚至会导致草源性

植物细胞蛋白质合成的场所

(1)蛋白质的合成场所是核糖体;(1)有氧呼吸的场所是细胞质基质和线粒体,主要场所是线粒体.

植物蛋白质的提取方法

植物蛋白质的提取方法基本上有这几种:盐析法、有机溶剂法和等电点法。1、盐析法原理:盐析法是指在药物溶液中加入大量的无机盐,使某些高分子物质的溶解度降低沉淀析出,而与其他成分分离的方法。盐析法主要用于蛋白质的分离纯化。常作盐析的无机盐有硫酸钠、硫酸镁、硫酸铵等。2、有机溶剂法原理:机溶剂引起蛋白质沉淀

最新研究揭示蓝细菌受光/暗调控的蛋白质降解

  光对于光合生物(包括高等植物和蓝细菌)是必需的,并参与调控蛋白质的合成与降解。光调控的蛋白质降解是光合生物中蛋白质质量控制的重要机制,其中最典型、研究最深入的是光系统II反应中心D1蛋白,其光诱导的降解和修复是光合作用能持续进行的保证。此外,是否存在大量未被发现的受光调控的蛋白质降解及修复尚不清

RNA降解

新鲜细胞:如果试剂没有问题,且外源性污染也可以排除,那么降解几乎都来自裂解液的用量不足。如  果将裂解液直接加入培养皿中裂解细胞,一定要使裂解液能覆盖住细胞。 2. 新鲜组织:某些富含内源核酸酶的样品(如肝脏,胸腺等),即使使用电动匀浆器匀浆也不能避免RNA的降解。更可靠的方法是:在液氮条件下将组织

γ氨基丁酸在植物体中多胺降解途径的介绍

  多胺(polyamine,PAs)包括腐胺(putrescine,Put)、精胺(spermine,Spm)和亚精胺(spermidine,Spd),其中以腐胺作为多胺生物代谢的中心物质。多胺降解途径是指二胺或多胺(PAs)分别经二胺氧化酶(diamine oxidase,DAO)和多胺氧化酶(

木本植物蛋白质提取实验

实验材料树皮                                                          试剂、试剂盒沉淀缓冲液                                                                  漂洗缓冲液