牡丹籽油亚临界流体萃取工艺优化

采用亚临界流体技术萃取牡丹籽油,通过正交试验对制油工艺进行优化,并对此法所得牡丹籽油的脂肪酸组成及理化性质进行分析。结果表明,最优萃取工艺条件为萃取温度50℃、萃取压强0.5 MPa、每次萃取30 min、萃取3次,该条件下牡丹籽出油率达24.16%。所得牡丹籽油共鉴定出12种脂肪酸,主要为亚麻酸(45.412 2%)、亚油酸(38.119 9%)、棕榈酸(11.124 6%)和硬脂酸(3.648 9%)。其理化指标为:相对密度0.901 3、折光指数1.474 2、酸值3.25 mg KOH/g、碘值175 g I2/100 g、皂化值176 mg KOH/g、过氧化值1.48 meq/kg。......阅读全文

牡丹籽油亚临界流体萃取工艺优化

采用亚临界流体技术萃取牡丹籽油,通过正交试验对制油工艺进行优化,并对此法所得牡丹籽油的脂肪酸组成及理化性质进行分析。结果表明,最优萃取工艺条件为萃取温度50℃、萃取压强0.5 MPa、每次萃取30 min、萃取3次,该条件下牡丹籽出油率达24.16%。所得牡丹籽油共鉴定出12种脂肪酸,主要为亚麻酸(

亚临界萃取牡丹籽油的工艺研究

以牡丹籽为原料、亚临界丁烷为萃取溶剂、牡丹籽油萃取率为评价指标,选择萃取次数、萃取温度、萃取时间、料液比为考察因素,采用正交试验优化亚临界萃取牡丹籽油的最佳工艺条件。结果表明:亚临界萃取牡丹籽油的最佳工艺条件为萃取温度40℃、萃取时间40 min、萃取次数4次、料液比1∶2,在此条件下,牡丹籽油萃取

亚临界萃取牡丹籽油的工艺研究

以牡丹籽为原料、亚临界丁烷为萃取溶剂、牡丹籽油萃取率为评价指标,选择萃取次数、萃取温度、萃取时间、料液比为考察因素,采用正交试验优化亚临界萃取牡丹籽油的最佳工艺条件。结果表明:亚临界萃取牡丹籽油的最佳工艺条件为萃取温度40℃、萃取时间40 min、萃取次数4次、料液比1∶2,在此条件下,牡丹籽油萃取

牡丹籽油超临界CO_2萃取工艺优化及抗氧化活性的研究

以牡丹籽为原料,利用超临界CO2萃取法提取牡丹籽油。采用单因素试验对影响牡丹籽油萃取率的3个因素(温度、压力和时间)进行了考察;以萃取率为响应值,以温度、压力和时间3个主要影响因素设计正交试验(L934),对提取条件较为温和、对油脂抗氧化性成分破坏较小的超临界提取工艺进行了优化;采用DPPH法和亚铁

微波预处理超临界CO_2萃取牡丹籽油的工艺研究

为实现超临界CO2萃取技术高效萃取牡丹籽油,先利用微波技术对原料进行预处理,再利用超临界CO2萃取技术萃取牡丹籽油。固定微波功率800 W,采用正交实验得到微波预处理最佳条件为:微波预处理时间40 s,原料粉碎粒度100目,原料水分含量6.2%。采用响应面法对超临界CO2萃取工艺条件进行优化分析,得

亚临界流体萃取胡麻籽低温压榨饼中油脂

为高品质提取胡麻籽低温压榨饼残油,采用D-optimum响应面设计优化亚临界丁烷萃取胡麻饼工艺,研究萃取温度、时间和液料比对油脂提取率的影响,并将所得油与粕与正已烷工艺进行品质比较。结果表明:液料比和萃取时间对油脂提取率的影响显著(P0.05);液料比与萃取温度交互作用显著(P0.05);最佳工艺参

辣椒籽油的亚临界萃取工艺及其挥发性香气物质研究

辣椒籽作为辣椒果肉加工的副产物,一直得到不到合理的开发利用。辣椒籽中含有20%左右的油脂,其中富含丰富的不饱和脂肪酸,是一种食用价值很高的植物油脂。同时,脱脂的辣椒籽中含有丰富的植物蛋白和膳食纤维,都具有很高的利用价值。总体来说,辣椒籽具有很高的开发价值。然而,传统的压榨提油工艺,对于油料作物的利用

亚临界萃取葫芦巴籽油及其籽粕的开发利用研究

葫芦巴(Fenugreek,Trigonella foenum-graecum L.)是一种传统的药食两用资源,在我国有着广泛的种植,葫芦巴籽中含有6-12%的油脂,其中富含不饱和脂肪酸,并且含有丰富的膳食纤维、多糖、蛋白质、维生素和矿物质、生物碱、黄酮及皂苷等生理活性成分,具有极高的营养价值与诸多

亚临界萃取葫芦巴籽油及其籽粕的开发利用研究

葫芦巴(Fenugreek,Trigonella foenum-graecum L.)是一种传统的药食两用资源,在我国有着广泛的种植,葫芦巴籽中含有6-12%的油脂,其中富含不饱和脂肪酸,并且含有丰富的膳食纤维、多糖、蛋白质、维生素和矿物质、生物碱、黄酮及皂苷等生理活性成分,具有极高的营养价值与诸多

超临界流体萃取工艺的响应面优化分析与模拟

超临界流体萃取作为一种新型的化工分离技术,能够有效地运用于一些天然产物的有效成分提取。萃取过程中各操作参数的影响特点及实验参数的优化一直是学者们研究的重点。本文研究了超临界流体萃取姜与薰衣草中有效成分的工艺,通过响应面分析,优化了超临界流体萃取操作参数。基于萃取床层质量守恒原理建立了超临界流体萃取的

超临界二氧化碳萃取葡萄籽油工艺优化

为了回收利用葡萄酒酿造过程产生的副产品中的有效成分,本文利用超临界CO_2萃取技术从葡萄籽中提取含有不饱和脂肪酸的葡萄籽油,意在考量超临界CO_2技术在萃取葡萄籽油方面的作用。设计单因素实验,研究了萃取压力、萃取温度、CO_2流量以及停留时间对葡萄籽油萃取率的影响。单因素实验结果表明萃取压力对萃取结

稻米胚芽油的超临界CO2萃取工艺优化

利用超临界 CO2萃取稻米胚芽油,以萃取压力、萃取温度、萃取时间为响应因素,稻米胚芽油萃取率为响应值,运用响应面法优化萃取条件.结果表明:最佳萃取条件为萃取压力 30 MPa、萃取温度40℃、萃取时间 120 min,在此条件下稻米胚芽油萃取率为 90.5%;超临界 CO2萃取法得到的稻米胚芽油饱和

简述超临界流体萃取的工艺流程

  将需要萃取的植物粉碎,称取约300—700g装入萃取器⑹中,用CO2反复冲洗设备以排除空气。操作时先打开阀⑿及气瓶阀门进气,再启动高压阀⑷升压,当压力升到预定压力时再调节减压阀⑼,调整好分离器⑺内的分离压力,然后打开放空阀⑽接转子流量计测流量通过调节各个阀门,使萃取压力、分离压力及萃取过程中通过

简述超临界流体萃取的工艺流程

  将需要萃取的植物粉碎,称取约300—700g装入萃取器⑹中,用CO2反复冲洗设备以排除空气。操作时先打开阀⑿及气瓶阀门进气,再启动高压阀⑷升压,当压力升到预定压力时再调节减压阀⑼,调整好分离器⑺内的分离压力,然后打开放空阀⑽接转子流量计测流量通过调节各个阀门,使萃取压力、分离压力及萃取过程中通过

超临界流体萃取技术的工艺流程

将需要萃取的植物粉碎,称取约300—700g装入萃取器(6)中,用CO2反复冲洗设备以排除空气。操作时先打开阀(12)及气瓶阀门进气,再启动高压阀(4)升压,当压力升到预定压力时再调节减压阀(9),调整好分离器(7)内的分离压力,然后打开放空阀(10)接转子流量计测流量通过调节各个阀门,使萃取压力、

超临界流体萃取的临界流体的介绍

  超临界流体(Supercritical Fluid,SF)是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。超临界流体具有气体和液体的双重特性。SF的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互 作用和扩散作用,因而SF对许多物

关于超临界流体萃取技术超临界流体萃取的特点

  1)超临界流体 CO2萃取与化学法萃取相比有以下突出的优点:  (1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着 药用植物的全部成分,而且能把高沸点,低 挥发度、易 热解的物质在其沸点温度以下萃取出来;  (2)使用SFE

芝麻油的亚临界萃取工艺研究

本文以白芝麻为原料,采用响应面法优化芝麻油的亚临界萃取工艺。分别以出油率和芝麻油中木脂素含量为指标,确定各自的最佳工艺参数。分析所得芝麻毛油的理化性质。本研究取得了良好的结果,对芝麻油制取技术水平的提升具有重要意义。 以出油率为考察指标,采用单因素试验和响应面试验优化芝麻油的亚临界萃取工艺。优化得到

芝麻油的亚临界萃取工艺研究

在单因素试验的基础上,运用响应面法优化芝麻油的亚临界萃取工艺。结果表明萃取温度、萃取次数及料液比对芝麻油出油率都有显著影响。优化得到的最佳工艺条件为:萃取温度50℃,萃取次数5次,料液比1∶3.3。在此工艺条件下,芝麻油的出油率达到50.30%,验证值为50.15%,两者的相对误差为0.11%。

超临界流体萃取的临界流体的内容介绍

  超临界流体(Supercritical Fluid,SF)是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。超临界流体具有气体和液体的双重特性。SF的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互作用和扩散作用,因而SF对许多物质

文冠果籽油的超临界萃取及其脂肪酸组成

为了更加科学而有效地开发与利用文冠果,应用CO2超临界萃取技术,对文冠果籽油的提取工艺条件进行了试验研究,并对超临界萃取的文冠果籽油的各项理化指标值和脂肪酸组成进行了测定与分析。提取试验结果表明,CO2超临界萃取文冠果籽油的工艺条件为:萃取压力30 MPa,萃取温度50℃,C O2流量40 L/h,

亚临界萃取辣木生物活性成分初探

辣木树属辣木树科,原产于印度北部,具有极高的经济价值。其种子含油高,叶片可以做保健食品使用。对高血压、糖尿病等疾病有预防和治疗等作用。目前,国内外对辣木的深加工和利用等研究较少。本文以辣木籽和辣木叶粉为原料,创新采用亚临界流体萃取技术分别制得辣木籽油和辣木黄酮萃取物,黄酮萃取物再使用液液萃取和大孔树

亚临界低温萃取技术是做什么的?

在天然产物提取中的应用由于亚临界流体常温常压条件下是气体状态, 因此亚临界流体极易气化,由此可以在常温或者较低温度的状态下对热敏性物料做到萃取和分离。经过实践,亚临界流体萃取技术已应用于众多的天然产物脂溶性成分的提取。如栾树籽、无患子果、青刺果、沙棘、黄连木果、虎坚果、玫瑰花、薰衣草、银杏叶、青蒿等

枸杞籽油的超临界萃取及其微胶囊化技术的研究

在枸杞的世界生产总值中,我国枸杞产量居于首位,枸杞加工比例呈上升趋势。随着枸杞汁、枸杞酒等产品产量的增加,大量枸杞废渣带来的环境污染和资源浪费问题日益突出。在生产加工过程中,产生的皮、籽等废渣含量占枸杞鲜果总量的20%~25%,枸杞籽是枸杞废渣中的主要成分,占废渣干重的60%~70%。枸杞籽中籽油含

超临界流体萃取原理

超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来

超临界流体萃取介绍

超临界流体萃取超临界流体(SCF)温度和压力均高于临界点的流体,本身特性为:1.其扩散系数比气体小,但比液体高一个数量级;2.黏度接近气体;3.密度类似液体,压力的细微变化可导致其密度的显著变动;4.压力或温度的改变可导致相变。基本原理在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依

超临界流体萃取设备

超临界流体萃取设备(more)

亚临界低温萃取技术是做什么的?

在天然产物提取中的应用由于亚临界流体常温常压条件下是气体状态, 因此亚临界流体极易气化,由此可以在常温或者较低温度的状态下对热敏性物料做到萃取和分离。经过实践,亚临界流体萃取技术已应用于众多的天然产物脂溶性成分的提取。如栾树籽、无患子果、青刺果、沙棘、黄连木果、虎坚果、玫瑰花、薰衣草、银杏叶、青

超临界流体萃取—超临界多元流体反应精馏介绍

  超临界流体反应精馏系把反应与精馏工艺合而为一,其优越性是无庸置疑的,但仍受精馏自由度的约束较难实现产业化,有关的理、工科科技人员特着手研究开发超临界多元流体反应精馏,首选研究课题是用于对大宗的天然脂肪酸、单体香料及松节油等生物资源有机物的高压加氢、臭氧氧化、固体超强酸催化氧化及酶反应等,这一新工

超临界萃取和亚临界萃取的区别

超临界CO2流体萃取的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。亚临界萃