亚临界流体萃取胡麻籽低温压榨饼中油脂
为高品质提取胡麻籽低温压榨饼残油,采用D-optimum响应面设计优化亚临界丁烷萃取胡麻饼工艺,研究萃取温度、时间和液料比对油脂提取率的影响,并将所得油与粕与正已烷工艺进行品质比较。结果表明:液料比和萃取时间对油脂提取率的影响显著(P0.05);液料比与萃取温度交互作用显著(P0.05);最佳工艺参数为液料比8.4 m L/g、萃取时间40 min、萃取温度26℃,此条件下胡麻籽油的提取率为96.50%。亚临界丁烷萃取的胡麻籽油红色较浅、黄色较深,酸价与过氧化值都优于正已烷工艺,磷脂质量分数约为正已烷工艺的1/10。亚临界丁烷萃取后的胡麻籽粕,中性洗涤纤维质量分数低,蛋白中可溶性氮质量分数是正已烷工艺的3.5倍。......阅读全文
亚临界流体萃取胡麻籽低温压榨饼中油脂
为高品质提取胡麻籽低温压榨饼残油,采用D-optimum响应面设计优化亚临界丁烷萃取胡麻饼工艺,研究萃取温度、时间和液料比对油脂提取率的影响,并将所得油与粕与正已烷工艺进行品质比较。结果表明:液料比和萃取时间对油脂提取率的影响显著(P0.05);液料比与萃取温度交互作用显著(P0.05);最佳工艺参
低温压榨菜籽饼油脂亚临界萃取工艺技术研究
油菜是我国重要的油料作物,种植面积约为700万hm2,油菜籽产量1200万t左右。菜籽制油工艺主要为预榨-浸出(PE),其生产的毛油色泽深、品质较差,菜籽饼中粗纤维含量高,蛋白过度变性,为解决上述缺陷,脱皮菜籽低温压榨制油工艺逐步发展起来。脱皮低温压榨菜籽饼(LTPCR)品质较好,如何将LTPCR中
牡丹籽油亚临界流体萃取工艺优化
采用亚临界流体技术萃取牡丹籽油,通过正交试验对制油工艺进行优化,并对此法所得牡丹籽油的脂肪酸组成及理化性质进行分析。结果表明,最优萃取工艺条件为萃取温度50℃、萃取压强0.5 MPa、每次萃取30 min、萃取3次,该条件下牡丹籽出油率达24.16%。所得牡丹籽油共鉴定出12种脂肪酸,主要为亚麻酸(
亚临界低温萃取技术是做什么的?
在天然产物提取中的应用由于亚临界流体常温常压条件下是气体状态, 因此亚临界流体极易气化,由此可以在常温或者较低温度的状态下对热敏性物料做到萃取和分离。经过实践,亚临界流体萃取技术已应用于众多的天然产物脂溶性成分的提取。如栾树籽、无患子果、青刺果、沙棘、黄连木果、虎坚果、玫瑰花、薰衣草、银杏叶、青蒿等
亚临界低温萃取技术是做什么的?
在天然产物提取中的应用由于亚临界流体常温常压条件下是气体状态, 因此亚临界流体极易气化,由此可以在常温或者较低温度的状态下对热敏性物料做到萃取和分离。经过实践,亚临界流体萃取技术已应用于众多的天然产物脂溶性成分的提取。如栾树籽、无患子果、青刺果、沙棘、黄连木果、虎坚果、玫瑰花、薰衣草、银杏叶、青
辣椒籽油的亚临界萃取工艺及其挥发性香气物质研究
辣椒籽作为辣椒果肉加工的副产物,一直得到不到合理的开发利用。辣椒籽中含有20%左右的油脂,其中富含丰富的不饱和脂肪酸,是一种食用价值很高的植物油脂。同时,脱脂的辣椒籽中含有丰富的植物蛋白和膳食纤维,都具有很高的利用价值。总体来说,辣椒籽具有很高的开发价值。然而,传统的压榨提油工艺,对于油料作物的利用
亚临界萃取牡丹籽油的工艺研究
以牡丹籽为原料、亚临界丁烷为萃取溶剂、牡丹籽油萃取率为评价指标,选择萃取次数、萃取温度、萃取时间、料液比为考察因素,采用正交试验优化亚临界萃取牡丹籽油的最佳工艺条件。结果表明:亚临界萃取牡丹籽油的最佳工艺条件为萃取温度40℃、萃取时间40 min、萃取次数4次、料液比1∶2,在此条件下,牡丹籽油萃取
亚临界萃取牡丹籽油的工艺研究
以牡丹籽为原料、亚临界丁烷为萃取溶剂、牡丹籽油萃取率为评价指标,选择萃取次数、萃取温度、萃取时间、料液比为考察因素,采用正交试验优化亚临界萃取牡丹籽油的最佳工艺条件。结果表明:亚临界萃取牡丹籽油的最佳工艺条件为萃取温度40℃、萃取时间40 min、萃取次数4次、料液比1∶2,在此条件下,牡丹籽油萃取
亚临界水技术能否用于生物油脂的提取
亚临界流体萃取相比其它分离方法具有许多优点: 无毒、无害,环保、无污染、非热加工、保留提取物的活性产品不破坏、不氧化,产能大、可进行工业化大规模生产,节能、运行成本低,易于和产物分离。因此, 亚临界流体萃取与分离技术在天然动植物有效成分的提取、中药(含复方)活性成分的提取与有害脂溶性成分的分离、昆虫
超临界CO_2萃取脱皮菜籽饼粕油脂的可行性
为提高脱皮双低菜籽低温压榨饼的附加值,采用Box-Behnken响应面设计优化超临界CO2萃取脱皮双低菜籽低温压榨饼中油脂的工艺,研究萃取压力、温度和时间对油脂提取率的影响,并对萃取得到的油和粕的品质进行检测。结果表明:萃取温度对油脂提取率的影响显著(P0.05);萃取压力和时间对油脂提取率的影响极
超临界流体萃取的临界流体的介绍
超临界流体(Supercritical Fluid,SF)是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。超临界流体具有气体和液体的双重特性。SF的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互 作用和扩散作用,因而SF对许多物
关于超临界流体萃取技术超临界流体萃取的特点
1)超临界流体 CO2萃取与化学法萃取相比有以下突出的优点: (1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着 药用植物的全部成分,而且能把高沸点,低 挥发度、易 热解的物质在其沸点温度以下萃取出来; (2)使用SFE
亚临界萃取葫芦巴籽油及其籽粕的开发利用研究
葫芦巴(Fenugreek,Trigonella foenum-graecum L.)是一种传统的药食两用资源,在我国有着广泛的种植,葫芦巴籽中含有6-12%的油脂,其中富含不饱和脂肪酸,并且含有丰富的膳食纤维、多糖、蛋白质、维生素和矿物质、生物碱、黄酮及皂苷等生理活性成分,具有极高的营养价值与诸多
亚临界萃取葫芦巴籽油及其籽粕的开发利用研究
葫芦巴(Fenugreek,Trigonella foenum-graecum L.)是一种传统的药食两用资源,在我国有着广泛的种植,葫芦巴籽中含有6-12%的油脂,其中富含不饱和脂肪酸,并且含有丰富的膳食纤维、多糖、蛋白质、维生素和矿物质、生物碱、黄酮及皂苷等生理活性成分,具有极高的营养价值与诸多
超临界流体萃取的临界流体的内容介绍
超临界流体(Supercritical Fluid,SF)是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。超临界流体具有气体和液体的双重特性。SF的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互作用和扩散作用,因而SF对许多物质
超临界流体萃取原理
超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来
超临界流体萃取设备
超临界流体萃取设备(more)
超临界流体萃取介绍
超临界流体萃取超临界流体(SCF)温度和压力均高于临界点的流体,本身特性为:1.其扩散系数比气体小,但比液体高一个数量级;2.黏度接近气体;3.密度类似液体,压力的细微变化可导致其密度的显著变动;4.压力或温度的改变可导致相变。基本原理在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依
超临界流体萃取—超临界多元流体反应精馏介绍
超临界流体反应精馏系把反应与精馏工艺合而为一,其优越性是无庸置疑的,但仍受精馏自由度的约束较难实现产业化,有关的理、工科科技人员特着手研究开发超临界多元流体反应精馏,首选研究课题是用于对大宗的天然脂肪酸、单体香料及松节油等生物资源有机物的高压加氢、臭氧氧化、固体超强酸催化氧化及酶反应等,这一新工
低温萃取工艺对芝麻油及芝麻粕品质影响的研究
本课题以白芝麻为原料,研究了亚临界流体萃取(SCFE)和超临界流体萃取(SFE)两种低温芝麻油萃取工艺,并分析了其对芝麻油、芝麻粕品质变化的影响,得到的结论主要有: 在单因素试验的基础上,正交试验优化了超临界CO2萃取芝麻油工艺条件。料液比4:50(W/V)、萃取温度60℃、萃取压力50MPa、CO
低温萃取工艺对芝麻油及芝麻粕品质影响的研究
本课题以白芝麻为原料,研究了亚临界流体萃取(SCFE)和超临界流体萃取(SFE)两种低温芝麻油萃取工艺,并分析了其对芝麻油、芝麻粕品质变化的影响,得到的结论主要有: 在单因素试验的基础上,正交试验优化了超临界CO2萃取芝麻油工艺条件。料液比4:50(W/V)、萃取温度60℃、萃取压力50MPa、CO
低温萃取工艺对芝麻油及芝麻粕品质影响的研究
本课题以白芝麻为原料,研究了亚临界流体萃取(SCFE)和超临界流体萃取(SFE)两种低温芝麻油萃取工艺,并分析了其对芝麻油、芝麻粕品质变化的影响,得到的结论主要有: 在单因素试验的基础上,正交试验优化了超临界CO2萃取芝麻油工艺条件。料液比4:50(W/V)、萃取温度60℃、萃取压力50MPa、CO
超临界萃取和亚临界萃取的区别
超临界CO2流体萃取的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。亚临界萃
超临界萃取和亚临界萃取的区别
超临界CO2流体萃取的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。亚临界萃
牡丹籽油超临界CO_2萃取工艺优化及抗氧化活性的研究
以牡丹籽为原料,利用超临界CO2萃取法提取牡丹籽油。采用单因素试验对影响牡丹籽油萃取率的3个因素(温度、压力和时间)进行了考察;以萃取率为响应值,以温度、压力和时间3个主要影响因素设计正交试验(L934),对提取条件较为温和、对油脂抗氧化性成分破坏较小的超临界提取工艺进行了优化;采用DPPH法和亚铁
超临界流体萃取技术介绍
超临界流体萃取是用超临界流体作为萃取剂,从各种复杂的样品中,把所需要的组分分离提取出来的一种分离提取技术。超临界流体萃取技术用于色谱样品的处理中,可从复杂的样品中将预测组分分离提取出来,制备成合适于色谱分析的样品。超临界流体的密度与液体相近,与液体一样很容易溶解其他物质;另一方面,超临界流体的黏度略
超临界流体萃取的优点
用超临界萃取方法提取天然产物时,一般用CO2作萃取剂。这是因为:a) 临界温度和临界压力低(Tc=31.1℃,Pc=7.38MPa),操作条件温和,对有效成分的破坏少,因此特别适合于处理高沸点热敏性物质,如香精、香料、油脂、维生素等;b)CO2可看作是与水相似的无毒、廉价的有机溶剂;c)CO2在使用
超临界流体萃取技术概述
1、技术原理超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单
超临界流体萃取技术介绍
超临界流体萃取是用超临界流体作为萃取剂,从各种复杂的样品中,把所需要的组分分离提取出来的一种分离提取技术。超临界流体萃取技术用于色谱样品的处理中,可从复杂的样品中将预测组分分离提取出来,制备成合适于色谱分析的样品。超临界流体的密度与液体相近,与液体一样很容易溶解其他物质;另一方面,超临界流体的黏度略
超临界流体萃取原理介绍
超临界流体萃取的基本原理:当气体处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,粘度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加