原子力显微镜及其在生物学研究中的应用

随着样品处理技术在液体中成像技术的改善,应用原子力显微镜(AFM)观察复杂的生化过程成为可能。转录过程是基因表达的中心环节,而使用原子力显微镜(AFM)观察蛋白质和DNA的相互作用存在一个矛盾要解决:生物分子需要固定到基底上是原子力显微镜(AFM)的成像基础,而生化反应过程却需要生物分子能相对自由地移动。即使在大量非特异性DNA存在时,RNA聚合酶(RNAP)与启动子间仍存在很高的结合率,人们猜想RNAP沿着DNA的扩散是其原因之一。非特异性复合物在适当条件下沉积后,利用原子力显微镜(AFM)可观察到RNAP沿着DNA滑动,且能在不同的DNA片段间转移。然而加入肝素可终止这些过程,这就进一步证实了RNAP- DNA相互作用的非特异性。原子力显微镜(AFM)还能对转录的过程进行实时观察,在加入核苷酸后,沉积到云母上的延长复合物沿着DNA模板单向移动。两个对照实验证实RNAP与DNA的相对移动与转录的实际情况相......阅读全文

原子力显微镜及其在生物学研究中的应用

  随着样品处理技术在液体中成像技术的改善,应用原子力显微镜(AFM)观察复杂的生化过程成为可能。转录过程是基因表达的中心环节,而使用原子力显微镜(AFM)观察蛋白质和DNA的相互作用存在一个矛盾要解决:生物分子需要固定到基底上是原子力显微镜(AFM)的成像基础,而生化反应过程却需要生物分子能相对自

细谈原子力显微镜在医学研究中的应用

众所周知,显微镜的发明将人们的视野从宏观带向了微观世界,而AFM原子力显微镜的出现,更是人类观察微观世界的又一里程碑。在医学的诊断中,AFM原子力显微镜可以更为直观的观测到细胞膜原子量级的变化,能有效的帮助医生对病例的进一步诊断。在心血管系统的研究中,科研人员利用原子力显微镜对免腹主动脉内皮细胞进行

原子力显微镜及其应用

      原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规

原子力显微镜及其应用

 原子力显微镜及其应用      原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品

原子力显微镜及其应用

原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,

原子力显微镜在蛋白质研究中的应用

原子力显微镜能够在溶液中观察生物大分子的结构并可以达到纳米级分辨率和能够在近生理的环境中对生物样品的活性过程进行跟踪观察的两大优势分别对膜蛋白的结构和蛋白质积累、解聚的过程进行了研究.共分为四部分,第一部分是引言,主要介绍原子力显微镜的诞生和技术特点,在此基础上,对电镜、核磁共振、x射线晶体衍射和原

原子力显微镜的原理及其应用

原子力显微镜(Atomic Force Microscope,AFM)基本原理:将一个队微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利用光学检测法或隧道电流检测法,通过测量针尖与样品表面原子间的作用力获得样品表面形貌的三维信息。可用来研究包括

原子力显微镜的原理及其应用

原子力显微镜(Atomic Force Microscope,AFM)基本原理:将一个队微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利用光学检测法或隧道电流检测法,通过测量针尖与样品表面原子间的作用力获得样品表面形貌的三维信息。可用来研究包括

原子力显微镜的原理及其应用

一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时

原子力显微镜的原理及其应用

原子力显微镜(Atomic Force Microscope,AFM)基本原理:将一个队微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利用光学检测法或隧道电流检测法,通过测量针尖与样品表面原子间的作用力获得样品表面形貌的三维信息。可用来研究包括

原子力显微镜在材料科学研究中的应用

       AFM 是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM 等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM 同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广阔的应用空间。AFM 可以在真空、超高真

原子力显微镜在材料科学研究中的应用

原子力显微镜在材料科学研究中的应用AFM 是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM 等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM 同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广阔的应用空间。AFM

岛津原子力显微镜在膜测试中的应用

 膜材料分为有机膜材料和无机膜材料。有机膜是指由有机高分子材料制成的薄膜状材料,具有许多优异的特性,例如柔韧性、透明性、耐磨损性和化学稳定性。有机膜在许多领域都有广泛的应用,如食品包装、药物传递、膜分离、电子器件等。无机膜是指由无机材料制成的薄膜状材料,与有机膜相比,无机膜通常具有更高的热稳定性、化

原子力显微镜在制浆造纸的研究中的作用

植物纤维的表面化学组成与分布、表面形貌与特征对纤维的润湿性和柔韧性有重大影响,同时还影响到纤维间结合、纤维静电动力、纸浆的打浆和纤维与添加剂的相互作用。原子力显微镜AFM在材料表面的分析研究方面以其独特的优势而获得广泛应用和很大的发展,是目前材料研究领域不可或缺的重要仪器。受利于原子力显微镜独特的结

原子力显微镜在病毒研究方面

单纯的疱疹病毒属于疱疹病毒科、α疱疹病毒亚科,是早发现的人类说携带的疱疹病毒,分为Ⅰ型(HSV-1)与Ⅱ型(HSV-2) 两个血清型,其感染十分普遍,程全球分布。长期以来,病毒的形态结构的研究主要依赖于透射电子显微镜和X2射线衍射技术。但由于电镜制样十分复杂,以及所需环境为真空状态下才可以进行观察。

岛津原子力显微镜在生物学及生命科学中的应用

 在生物学及生命科学研究中,各种显微镜是必不可少的工具。列文虎克发明的简单显微镜推开了人类对微生物观察的大门,显微学的发展随着显微工具的进步而深入。光学显微镜利用激光共聚焦技术将分辨率逼近了可见光波长的一半,电子显微镜进一步将其提高到纳米级别。但是对于生物学和生命科学而言,二者都无法完全满足应用需求

原子力显微镜(AFM)在光盘检测应用

    CD/DVD光盘具有存储量大、成本低、精度高和信息保存寿命长等特点,现已成为主要的数据储存介质。为了继续提高光盘容量及其质量,需要改善 盘片和模板表面质量的分析方法。原子力显微镜(AFM)可直接进行三维测量[1-2],能够在nm尺度上对CD/DVD及其模板上的信息位凹坑和凸台结构 进行直接观

AFM原子力显微镜在锂离子电池行业中的应用

锂系电池一般分为锂电池和锂离子电池。锂电池:以金属锂为负极。锂离子电池:使用非水液态有机电解质。锂离子电池主要应用于手机和笔记本电脑中,也就是人们通常俗称的锂电池。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。而真正锂系电池分类中的锂电池,由于其危险性,很少应用在电子产品中。日本索尼

原子力显微镜在聚合物凝聚态中的应用

表面形貌及相分离  樊文玲等[5]用NanoScopea Mutimode AFM对自制的聚丙烯酸纳复合超滤膜UPANA-2 (MWCO为2000)和基膜PES超滤膜(MWCO为70 000)表面进行了观测,得到的表面三维立体图真实反映了膜表面的整体形貌。Elimelech M等[6]用AFM考查了

岛津原子力显微镜在细胞及分子生物学的研究进展

原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的生命科学/医学观测设备。除了形貌观察外,原子力显微镜还可以对多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些性能为原子力显微镜应用于细胞和生物分子研究提供了技术基础。01 iPS干细胞

岛津原子力显微镜在细胞及分子生物学的研究进展

 原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的生命科学/医学观测设备。除了形貌观察外,原子力显微镜还可以对多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些性能为原子力显微镜应用于细胞和生物分子研究提供了技术基础。01 iPS干细

原子力显微镜的应用学科

AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,Y,Z方向的压电

非损伤微测技术及其在细胞生物学研究中的应用

非损伤微测技术及其在细胞生物学研究中的应用——(1)技术简介作者:旭月(北京)科技有限公司 美国扬格非损伤技术中心联系人:宋瑾,jin@youngerusa.com,010-82622628(电话),010-82622629(传真) 摘要:非损伤微测技术是一种选择性微电极技术,可以不损伤样品而获得进

激光扫描共聚焦显微镜系统及其在细胞生物学中的应用

激光扫描共聚焦显微镜(Laser scanning Confocal Microscopy ,简称LSCM)是近代生物医学图像仪器的最重要发展之一,它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针,利用计算机进行图像处理,从而得到细胞或组织内部微细结构的荧光图像,以及在亚

原子力显微镜在纳米技术中若干应用与定量分析

原子力显微镜作为扫描探针显微镜的一个重要成员,是纳米科学技术中的主要工具之一。由于具有纳米甚至原子量级的超高分辨率和柔性的测量环境要求使得原子力显微镜在纳米科技各领域,例如纳米计量、表面科学和生物科学等中的应用愈来愈广泛。 本文主要从多个侧面研究原子力显微镜应用的若干重要问题。首先,探讨原子力显微镜

ASYLUM原子力显微镜共享应用

仪器名称:原子力显微镜仪器编号:14009278产地:美国生产厂家:美国ASYLUM公司型号:MFP-3D-SA出厂日期:201212购置日期:201405所属单位:物理系>低维量子物理国家重点实验室开放共享平台>超导电子学实验室放置地点:理科楼C220固定电话:固定手机:固定email:phn17

原子力显微镜(AFM)应用举例

1, Lateral Force Microscopy 测量样品表面的摩擦力。2, 活体细胞测量3, chemical force microscopy 测量两个化合物之间的作用力。4, quantitative  nanomechanical 测量样品的形貌、模量、表面粘滞力、能量损失和形变量。5

导电型原子力显微镜的研制和应用研究

     扫描隧道显微镜只能测量导电的样品,原子力显微镜对样品是否导电没有特殊要求,但是无法测量样品导电性。在实际应用中,更多的研究对象是导电质与非导电质的混合物。特别是近年来人们感兴趣的金属有机复合材料、纳米颗粒镶嵌材料、纳米电子学等方面,都涉及到局域导电性及非导电性等问题。    鉴于STM和A

原子力显微镜的应用相关介绍

  1. 形貌观察:AFM可以对样品表面形态、纳米结构、链构象等方面进行研究。  2 . AFM在高分子科学方面的应用  (1) 高分子表面形貌和纳米结构的研究  图为所示为常规的AFM在高分子方面的应用.高分子的形貌可以通过接触式AFM、敲击式AFM来研究。接触式AFM研究形貌的分辨率与针尖和样品