M13噬菌体双链(复制型)DNA的制备

实验方法原理 感染 M13 噬菌体的细菌含病毒双链 RF DNA,培养基中粗提病毒颗粒中含单链子代 DNA,双链 RF DNA 可以采用类似于质粒纯化的方法从感染细胞的小量培养物中分离。从 1~2 ml 的感染细胞培养物中可以分离几微克的 RF DNA,这个量足以进行亚克隆和作限制酶酶切图谱。实验材料 限制性内切核酸酶大肠杆菌培养物试剂、试剂盒 碱裂解液乙醇酚氯仿TE仪器、耗材 琼脂糖凝胶实验步骤 一、材料1. 缓冲液和溶液碱裂解液Ⅰ碱裂解液Ⅱ碱性裂解液Ⅲ乙醇酚:氯仿(1:1,V/V)含 20 μg/ml Rnase A 的 TE ( pH 8.0)。2. 酶和缓冲液限制性内切核酸酶3. 凝胶琼脂糖凝胶(0.8%) 悬于 0.5 X TBE,含 0.5 μg/ml 溴化乙锭4. 载体和菌株感染了 M13 噬菌体的大肠杆菌培养物二、方法感染细胞的裂解1. 在微量离心机上,将 1 ml M13 感染细胞培养物以最大转速室......阅读全文

从M13噬菌体模板合成固定长度的单链DNA探针

实验材料大肠杆菌 DNA 聚合酶 I Klenow 片段限制性内切核酸酶模板 DNA寡核苷酸引物试剂、试剂盒乙酸铵DTTEDTA乙醇NaCl酚氯仿TBE 电泳缓冲液Tris-ClKlenow 基础缓冲液dNTP 溶液仪器、耗材变性聚丙烯酰胺凝胶或碱性琼脂糖凝胶黏性贴片或磷光黏性贴片Sephadex

从M13噬菌体模板合成固定长度的单链DNA探针

实验材料 大肠杆菌 DNA 聚合酶 I Klenow 片段限制性内切核酸酶模板 DNA寡核苷酸引物试剂、试剂盒 乙酸铵DTTEDTA乙醇NaCl酚氯仿TBE 电泳缓冲液Tris-ClKlenow 基础缓冲液dNTP 溶液仪器、耗材 变性聚丙烯酰胺凝胶或碱性琼脂糖凝胶黏性贴片或磷光黏性贴片Sephad

细胞系的多位点DNA指纹检测——经标记的-M13-噬菌体-DNA制备

实验方法原理用随机引物延伸法标记 M13mp9 DNA [ Finberg and Voglstein,1983 ],并用葡聚糖柱(Sephadex) 纯化。实验材料模板HEPESDTM试剂氧核苷酸牛血清蛋白P-dGTPKlenow 酶试剂、试剂盒DTM试剂OL试剂标记缓冲液洗柱缓冲液仪器、耗材Se

基因工程的载体3

⑷基因组成 lDNA至少包括61个基因,大多基因按功能相似性成簇排列,其中一部分为噬菌体生命活动的必须基因,另一部分约1/3为非必须区段。 3. l噬菌体载体的类型 插入型 (Insertion vectors )

λ噬菌体DNA的制备

实验概要本实验介绍了λ噬菌体DNA的制备、操作步骤和注意事项。实验原理λ噬菌体是最早使用的克隆载体,λ噬菌体的基因组是一长度约为50kb的双链DNA分子,它在宿主细胞有两种生活途径:其一是裂解生长,环状DNA   分子在细胞内多次复制,合成大量噬菌体基因产物,装配成噬菌体颗粒,裂解宿主菌再进行下一次

分子克隆化载体DNA的选择介绍

  ①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松弛型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以

从M13噬菌体模板合成非固定长度的单链DNA探针

实验方法原理 在合成过程中,低浓度的放射性标记的 dNTP 使探针的长度限制为 200~300 个核苷酸。但是新合成的 DNA 可通过改变投入的模板量和 dNTP 的浓度使其长度为 100~1000 个核苷酸,如此长度范围内的探针适用于大多数杂交实验。实验材料 大肠杆菌 DNA 聚合酶 I Klen

从M13噬菌体模板合成非固定长度的单链DNA探针

            实验方法原理 在合成过程中,低浓度的放射性标记的 dNTP 使探针的长度限制为 200~300 个核苷酸。但是新合成的 DNA 可通过改变投入的模板量和 dNTP 的浓度使其长度为 100~1000 个核苷酸,如此长度范围内的探针适用于大多数

从M13噬菌体模板合成非固定长度的单链DNA探针

在合成过程中,低浓度的放射性标记的 dNTP 使探针的长度限制为 200~300 个核苷酸。但是新合成的 DNA 可通过改变投入的模板量和 dNTP 的浓度使其长度为 100~1000 个核苷酸,如此长度范围内的探针适用于大多数杂交实验。本实验来源「分子克隆实验指南第三版」黄培堂等译。实验方法原理在

双链RNA病毒的复制介绍

  双链RNA病毒有两个特点,一是它的基因组为10-12条双链RNA分子;二是它有双层衣壳,而没有囊膜。病毒的RNA-RNA 聚合酶存在于髓核中,在该聚合酶的作用下病毒基因组转录正链RNA,它们自髓核逸出。它们既能作为mRNA,又能作为病毒基因组的模板。MRNA翻译结构蛋白,装配内层衣壳后,正链RN

基因克隆技术概述

基因克隆技术是分子生物学的核心技术,其目的是获得某一基因或DNA片段的大量拷贝,用于深入分析基因的结构与功能,并可达到人为改造细胞以及物种遗传性状的目的。基因克隆的一项关键技术是DNA重组技术,它利用酶学方法将不同来源的DNA分子进行体外特异性切割,重新拼接组装成一个新的杂合DNA分子。在此基础上将

来自噬菌体的惊喜——-M13-Antibody-(HRP)

前言2018年10月诺贝尔化学奖的一半颁发给了美国科学家George P. Smith和英国科学家Gregory P. Winter, 两人获奖的原因是多肽和抗体的噬菌体展示技术。噬菌体展示技术在生物医药研发中有着十分广泛的应用,是生物新药研发的源头技术,M13噬菌体则被广泛地应用于噬菌体展示技

基因工程的载体和工具酶2

2、pUC质粒载体1987年,J.Messing和J.Vieria采用MCS技术在pBR322基础上构建的。结构:(1)来自于pBR322的Ori(2)氨苄青霉素的抗性基因(ampr)。但核苷酸序列发生了变化(3) LacZ′基因编码β—半乳糖酶的α—肽链即氨基末端。(4)MCS区段是一段用于插入外

制备DNA测序模板实验——双脱氧测序的双链质粒DNA的碱变性

实验材料DNA试剂、试剂盒NaOHEDTA乙酸钠乙醇仪器、耗材离心管离心机摇床实验步骤1.  加入约0.5 pmol 重组质粒DNA于0.5 ml 微量离心管中,如果体积大于20 μl 应以乙醇沉淀,重溶于20 μl 水。2.  如果体积小于20 μl,用水补足20 μl。3.  加入2 μl 2

用T4噬菌体DNA聚合酶标记双链DNA的3端

            实验材料 限制性内切核酸酶 T4 噬菌体 DNA 聚合酶 模板 DNA 试剂、试剂盒 醋酸氨

用T4噬菌体DNA聚合酶标记双链DNA的3端

实验材料 限制性内切核酸酶T4 噬菌体 DNA 聚合酶模板 DNA试剂、试剂盒 醋酸氨乙醇酚氯仿T4 噬菌体 DNA 聚合酶缓冲液dNTP 溶液仪器、耗材 Sephadex G-50 离心柱水浴实验步骤 一、材料1. 缓冲液和溶液醋酸氨(10 mol/L)乙醇酚:氯仿(1:1,V/V)2. 酶和缓冲

用T4噬菌体DNA聚合酶标记双链DNA的3端

实验材料限制性内切核酸酶T4 噬菌体 DNA 聚合酶模板 DNA试剂、试剂盒醋酸氨乙醇酚氯仿T4 噬菌体 DNA 聚合酶缓冲液dNTP 溶液仪器、耗材Sephadex G-50 离心柱水浴实验步骤一、材料1. 缓冲液和溶液醋酸氨(10 mol/L)乙醇酚:氯仿(1:1,V/V)2. 酶和缓冲液适当的

M13噬菌体

·         M13 Phage (Michael Blaber)Very useful background information about M13: its infection, replication, packing, cloning. If you are new to phag

用噬菌粒载体制备单链DNA

实验方法原理 噬菌粒巧妙地组合了质粒和丝状噬菌体的特征。除了基本特征外,这些质粒通常是高拷贝数的,并带有一个修饰后的丝状噬菌体的主要基因间区。这个区域 ( 野生型为 508 bp)不表达蛋白,但含有全部的顺式作用序列,该作用是病毒 DNA 合成起始和结束及噬菌体颗粒的形态发生必不可少的。实验材料

用噬菌粒载体制备单链DNA

            实验方法原理 噬菌粒巧妙地组合了质粒和丝状噬菌体的特征。除了基本特征外,这些质粒通常是高拷贝数的,并带有一个修饰后的丝状噬菌体的主要基因间区。这个区域 ( 野生型为 508 bp)不表达蛋白,但含有全部的顺式作用序列,该作用是病毒 DNA

复制型DNA的结构特点

中文名称复制型DNA英文名称replicative form DNA;RF-DNA定  义单链核酸(DNA或RNA)病毒在复制期间所形成的由亲代单链分子与子代单链分子配对结合形成的DNA双链。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

什么是DNA的复制型?

在未受照射的细菌中,复制位点(replicating site)或生长点开始于DNA分子的起始点,并且复制点围绕环形分子半保留地发生复制。照射后,合饼应用溴尿嘧啶标记和氯化铯梯度离心的方法观察到复制型与正常不同。在此方法中,用3H一胸腺嘧啶预先标记大肠杆菌几个世代。预先标记的细胞或受照射或不受照射,

用噬菌粒载体制备单链DNA

噬菌粒巧妙地组合了质粒和丝状噬菌体的特征。除了基本特征外,这些质粒通常是高拷贝数的,并带有一个修饰后的丝状噬菌体的主要基因间区。这个区域 ( 野生型为 508 bp)不表达蛋白,但含有全部的顺式作用序列,该作用是病毒 DNA 合成起始和结束及噬菌体颗粒的形态发生必不可少的。本实验来源「分子克隆实验指

M13噬菌体液体培养

M13 噬菌体原种通常采用液体培养,感染细胞并不裂解而是缓慢生长形成稀悬液。接种几乎总是用一个新挑取的噬菌斑或单个噬菌斑获得的噬菌体颗粒悬液。感染细胞含 200 拷贝以上双链 RF DNA,每代分泌数百个噬菌体颗粒。本实验来源「分子克隆实验指南第三版」黄培堂等译。实验方法原理M13 噬菌体原种通常采

分子生物学实验基础知识

分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也

基因工程的载体和工具酶应用结合案例

第一节 载体引 言基因克隆的本质是使目的基因在特定的条件下得到扩增和表达,而目的基因本身无法进行复制和表达、不易进入受体细胞、不能稳定维持,所以就必须借助于“载体”及其“寄主细胞”来实现。作为基因克隆的载体必须具备以下特性:⑴载体必须是复制子。⑵具有合适的筛选标记,便于重组子的筛选。⑶具备多克隆位点

M13噬菌体衍生载体的制备实验——载体衍生法

M13噬菌体是一种丝状噬菌体,感染宿主后不裂解细菌细胞,只利用细胞内物质完成自身增殖,组装成完整病毒颗粒后被宿主细胞分泌而出,宿主细胞仍能继续生长分裂。为分子生物学中理想的质粒载体。基因间隔区的有些核苷酸序列即使发生突变、缺失活插入外源DNA片段,也不会影响M13DNA的复制,这为M13DNA构建克

M13噬菌体液体培养

            实验方法原理 M13 噬菌体原种通常采用液体培养,感染细胞并不裂解而是缓慢生长形成稀悬液。接种几乎总是用一个新挑取的噬菌斑或单个噬菌斑获得的噬菌体颗粒悬液。感染细胞含 200 拷贝以上双链 RF DNA,每代分泌数百个噬菌体颗粒。

M13噬菌体液体培养

实验方法原理 M13 噬菌体原种通常采用液体培养,感染细胞并不裂解而是缓慢生长形成稀悬液。接种几乎总是用一个新挑取的噬菌斑或单个噬菌斑获得的噬菌体颗粒悬液。感染细胞含 200 拷贝以上双链 RF DNA,每代分泌数百个噬菌体颗粒。实验材料 M13 噬菌斑大肠杆菌 F' 菌株仪器、耗材 LB

概述M13噬菌体的-构建

  单链 DNA 的酶切和连接是比较困难的,因此 M13 噬菌体在用作载体时是利用其双链 RF DNA。RF DNA 很容易从感染细胞中纯化出来,可以象质粒一样进行操作,并可通过转化方法再次导入细胞。  (1)载体的插入位点  在 M13 噬菌体基因组中绝大多数为必需基因,只有两个间隔区可用来插入外