蛋白质组学技术对营养胁迫中泛素化修饰变化情况分析与
吃货们,为了健康,少吃点吧! 小编知道一名资深的吃货,无论什么都阻挡不了美食的诱惑。但我忍不住要阻止:“吃货们!为了健康,少吃点吧!” 为什么要让热爱美食的你们做出如此痛苦的选择呢?看看下面这篇文献解读你就知道了。 Cell Death and Disease IF=5.965 Liver ubiquitome uncovers nutrient-stress-mediated trafficking and secretion of complement C3 研究背景 脊椎动物肝脏作为生物代谢的重要器官,在营养胁迫应答中发挥重要作用。在营养不足和营养过量时肝细胞会发生营养应激调控。肝细胞的营养应激会引发多种翻译后修饰变化,其中就包括泛素化修饰。本文通过蛋白质组学技术对营养胁迫中泛素化修饰变化情况进行了深入的分析与解读。 样本来源 小鼠肝脏 技术路线 Label......阅读全文
蛋白质组学技术对营养胁迫中泛素化修饰变化情况分析与
吃货们,为了健康,少吃点吧! 小编知道一名资深的吃货,无论什么都阻挡不了美食的诱惑。但我忍不住要阻止:“吃货们!为了健康,少吃点吧!” 为什么要让热爱美食的你们做出如此痛苦的选择呢?看看下面这篇文献解读你就知道了。 Cell Death and Disease IF=5.96
蛋白质组学技术对营养胁迫中泛素化修饰变化情况的分析
吃货们,为了健康,少吃点吧! 小编知道一名资深的吃货,无论什么都阻挡不了美食的诱惑。但我忍不住要阻止:“吃货们!为了健康,少吃点吧!” 为什么要让热爱美食的你们做出如此痛苦的选择呢?看看下面这篇文献解读你就知道了。 Cell Death and Disease IF=5.96
通过蛋白质组学技术对营养胁迫中泛素化修饰变化情况...
通过蛋白质组学技术对营养胁迫中泛素化修饰变化情况的分析与解读Cell Death and Disease IF=5.965Liver ubiquitome uncovers nutrient-stress-mediated trafficking and secretion of complemen
蛋白质的泛素化修饰
蛋白质的泛素化修饰主要发生在赖氨酸残基的侧链,且通常是多聚化 (多泛素化) 过程。被多泛素化修饰的蛋白质会被蛋白酶体(proteasome)识别进而被降解。三种关键的酶共同介导了这一多泛素化过程, 包括泛素活化酶 E1 (ubiquitin activating enzyme),泛素结合酶 E2 (
谢旗研究组发表泛素化修饰调控植物低磷胁迫响应的综述
磷是植物生长发育必需的大量元素之一,土壤中低磷胁迫会影响植物的生长并影响作物的产量。我国是世界上磷肥使用量最大的国家,施用磷肥在提高作物产量的同时也带来了一系列环境污染问题。因此,解析植物对低磷胁迫的响应机制并培育磷高效利用的作物是作物育种上的一个重要研究方向。 泛素化修饰是一种重要的蛋白质翻
Science-|-抗逆突破!泛素化介导叶绿体蛋白降解新途径
为了应对全球气候变化带来的频繁逆境胁迫,全面而清晰地了解植物面对胁迫反应的不同调控机制具有重要的意义。在植物抗逆研究中,研究发现非生物胁迫会抑制植物的光合作用,影响叶绿体的稳定性并诱导叶绿体的降解,叶绿体降解进而会引发植物早衰,最终影响作物产量。 叶绿体是为植物提供能量来源的重要细胞器
Science-|-抗逆突破!泛素化介导叶绿体蛋白降解新途径
为了应对全球气候变化带来的频繁逆境胁迫,全面而清晰地了解植物面对胁迫反应的不同调控机制具有重要的意义。在植物抗逆研究中,研究发现非生物胁迫会抑制植物的光合作用,影响叶绿体的稳定性并诱导叶绿体的降解,叶绿体降解进而会引发植物早衰,最终影响作物产量。 叶绿体是为植物提供能量来源的重要细胞器
Science-|-抗逆突破!泛素化介导叶绿体蛋白降解新途径
为了应对全球气候变化带来的频繁逆境胁迫,全面而清晰地了解植物面对胁迫反应的不同调控机制具有重要的意义。在植物抗逆研究中,研究发现非生物胁迫会抑制植物的光合作用,影响叶绿体的稳定性并诱导叶绿体的降解,叶绿体降解进而会引发植物早衰,最终影响作物产量。 叶绿体是为植物提供能量来源的重要细胞器。
Orbitrap在植物蛋白质组领域的应用
蛋白质组学技术已经成为植物科学研究中重要的工具,以Orbitrap为代表的高分辨质谱技术已在植物蛋白质研究领域产生重要的科研成果,发表在Nature Plant,Plant Cell 等核心期刊上。 利用Orbitrap质谱可针对植物样本描绘细胞和亚细胞蛋白定位,以及追踪蛋白之间的相互作用,鉴定不同
研究发现泛素信号调节细胞自噬、感应泛素胁迫新机制
5月5日,学术期刊《细胞研究》(Cell Research)正式发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所胡荣贵研究组的最新研究成果Ubiquitylation of p62/Sequestosome1 Activates Its Autophagy Receptor Func
遗传发育所:植物内质网相关蛋白质降解机制综述文章
植物在整个生活史中面临多种非生物和生物胁迫,一直以来科学家对于植物如何响应环境胁迫并协调生长发育和胁迫响应之间的关系进行着系统而深入的研究。蛋白质泛素化修饰是一种重要的蛋白质翻译后修饰,主要通过影响蛋白稳定性、活性、亚细胞定位及蛋白之间的相互作用等在植物生长发育和适应各种环境的过程中发挥重要功能
关于单泛素化修饰的基本介绍
单泛素化修饰是一种调节信号可以引起靶蛋白的活性、定位以及蛋白质结构的改变从而对蛋白质的胞吞途径、膜泡的出芽、组蛋白的修饰、基因的转录以及蛋白质核内的定位进行调节。单独的泛素本身并没有任何生物功能,它只是一种分子标记蛋白,发挥作用必须在ATP提供能量的前提下依靠泛素途径的相关酶类及蛋白酶体。Gua
蛋白质PEG化修饰与纯化
聚乙二醇具有较广的分子量分布,随着平均分子量的不同,性质也产生差异,当分子量小于1000Da时,聚乙二醇是无色无臭粘稠的液体,高分子量的聚乙二醇则是蜡状白色固体,固体聚乙二醇的熔点正比于分子量,逐渐接近67℃的极限。毒性随分子量的增加而减少,小于400Da的 PEG在体内会经乙醇脱氢酶降解成有毒的代
蛋白质组学揭示植物干旱胁迫的分子机制
Significant and unique changes in phosphorylation levels of four leaf phosphoproteins in two apple rootstock genotypes under drought stress.干旱胁迫对
定量蛋白质组学方法获得了泛素化分布和动态变化信息的介绍
泛素化是真核生物特有的翻译后修饰,在哺乳动物细胞中,泛素化靶向∼100,000 个位点,并由约640种泛素化酶和约90种去泛素化酶可逆调控。尽管目前泛素化已被广泛关注和研究,但对蛋白质特定位点的泛素化比例(占有率)进行量化的研究却很少。因此本文主要通过定量蛋白质组学方法,量化了人类细胞中蛋白质组范围
遗传发育所水稻泛素连接酶调控干旱胁迫信号转导获进展
干旱胁迫严重影响农作物的产量和质量,在当前人口日益增长和粮食缺乏的情况下,对其调控机制进行研究显得极为迫切和重要。泛素介导的蛋白酶体途径是植物体内蛋白质修饰最重要的调控机制之一,其功能涉及植物细胞周期和光周期调控、激素信号转导、新陈代谢调控和DNA修复等多个过程。目前拟南芥中一系列
泛素化介导叶绿体蛋白降解新途径
为了应对全球气候变化带来的频繁逆境胁迫,全面而清晰地了解植物面对胁迫反应的不同调控机制具有重要的意义。在植物抗逆研究中,研究发现非生物胁迫会抑制植物的光合作用,影响叶绿体的稳定性并诱导叶绿体的降解,叶绿体降解进而会引发植物早衰,最终影响作物产量。叶绿体是为植物提供能量来源的重要细胞器。植物叶绿体内部
科学家揭示植物内质网相关蛋白质降解机制
植物在整个生活史中面临多种非生物和生物胁迫,一直以来科学家对于植物如何响应环境胁迫并协调生长发育和胁迫响应之间的关系进行着系统而深入的研究。蛋白质泛素化修饰是一种重要的蛋白质翻译后修饰,主要通过影响蛋白稳定性、活性、亚细胞定位及蛋白之间的相互作用等在植物生长发育和适应各种环境的过程中发挥重要功能
国自然冲刺蛋白翻译后修饰的基金申请解析与研究注意点
每年三月初,都是科研界的“高考”倒计时,因为距离国自然基金申请的截止日期已不到半月。纵观历年国自然申请情况,蛋白的翻译后修饰都是申请中重大研究方向之一。2018年国自然统计表明,磷酸化、泛素化、乙酰化等修饰的相关基金项目,总研究资助金额超过2亿。 继上周的肠道微生物研究方案解析后(国自然冲
国自然冲刺蛋白翻译后修饰的基金申请解析与研究注意点
每年三月初,都是科研界的“高考”倒计时,因为距离国自然基金申请的截止日期已不到半月。纵观历年国自然申请情况,蛋白的翻译后修饰都是申请中重大研究方向之一。2018年国自然统计表明,磷酸化、泛素化、乙酰化等修饰的相关基金项目,总研究资助金额超过2亿。 继上周的肠道微生物研究方案
蛋白质组学技术分析方法及概括
1 蛋白质组学概述“蛋白质组”一词的英文是Proteome,它是proteins 和genome 两个词的组合,意思是proteins expressed by a genome,即为基因组表达的蛋白质[1]。蛋白质组的概念是1994 年由Wilkins首先提出,并首次在1995 年7月的“Elec
蛋白质组学技术分析方法及概括
1 蛋白质组学概述“蛋白质组”一词的英文是Proteome,它是proteins 和genome 两个词的组合,意思是proteins expressed by a genome,即为基因组表达的蛋白质[1]。蛋白质组的概念是1994 年由Wilkins首先提出,并在1995 年7月的“Electr
Nature:揭示降低未被泛素标记的蛋白水平可延长寿命
科学家们已经发现,小分子蛋白泛素在调节衰老过程中发挥着重要作用。以前人们知道泛素控制着信号转导和代谢等过程。在一项新的研究中,德国科隆大学的David Vilchez教授及其团队对模型生物秀丽隐杆线虫(一种广泛用于衰老研究的线虫)衰老期间的泛素特征进行了全面的定量分析。这种称为泛素蛋白质组学(u
蛋白翻译后修饰的基金申请解析与研究注意点(二)
由此可见,泛素化相关基金无论是申请项目数还是金额数均在向磷酸化逼近,甚至从重点项目数看,18年泛素化的项目数已然超过了磷酸化。进一步统计表明,泛素化研究资助项目在医学部中一共98项,总资助金额高达4700万元。由此可见,泛素化的相关研究正是科研界的“当红小生”,基金申请的一大热点。图2.国自然基金项
什么是蛋白质泛素化
泛素化是指泛素分子在一系列特殊的酶作用下,将细胞内的蛋白质分类,从中选出靶蛋白分子,并对靶蛋白进行特异性修饰的过程。这些特殊的酶包括泛素激活酶,结合酶、连结酶和降解酶等。
蛋白质泛素化的介绍
蛋白质泛素化作用是后翻译修饰的一种常见形式,该过程能够调节不同细胞途径中各式各样的蛋白质底物。通过一个三酶级联(E1-E2-E3),蛋白质的泛素连接由E3泛素连接酶催化,这种酶是cullin-RING复合体超级家族的最佳代表。 在从酵母到人类的各级生物中都保守的DDB1-CUL4-ROC1复合
什么是蛋白质泛素化
泛素化是指泛素分子在一系列特殊的酶作用下,将细胞内的蛋白质分类,从中选出靶蛋白分子,并对靶蛋白进行特异性修饰的过程。这些特殊的酶包括泛素激活酶,结合酶、连结酶和降解酶等。
蛋白质翻译后修饰通过泛素化降解途径调节脂肪酸合成
2月7日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院上海营养与健康研究所李于研究组的最新研究成果“Post-translational regulation of lipogenesis via AMPK-dependent phosphoryl
深入解析玉米干旱响应分子机制
玉米是世界上种植广泛和产量最高的粮食作物,对于全球的粮食安全至关重要。在影响玉米产量的诸多因素中,干旱是主要的非生物胁迫因素。深入解析玉米干旱响应的分子机制将有助于玉米耐旱新品种的培育与推广应用。 中国科学院遗传与发育生物学研究所谢旗研究组与陈化榜研究组合作,通过对玉米重组自交系群体苗期耐旱性