应力诱导曲率对4HSiCMOS平带电压和界面态密度的影响

碳化硅(SiC)上的栅氧化膜会严重影响SiC金属氧化物半导体场效应晶体管(MOSFET)的性能。本文作者通过电容 - 电压(C-V)测试研究了应力/应变引起的曲率对栅氧界面态密度(Dit)的影响。外延晶片的曲率通过薄膜应力测量系统进行测试。在干热氧化过程中,压缩/拉伸曲率导致SiO2的正Vfb偏移(负固定电荷),SiO2 / SiC的界面态密度增加。另外,文章还发现样品的横光学(TO)声子波数与薄膜的曲率有关,这表明应力主要会影响SiO2 / SiC的界面。根据实验结果,本文作者提出“无应力”氧化膜可能是SiC-MOSFET应用的最佳选择。实验选择4英寸SiC全晶片进行,其可以测量由应力引起的曲率。4° 偏角n型4H-SiC(0001)Si面衬底,其上生长为有效载流子密度(Nd-Na)8×10E15cm-3下氮掺杂的(12μm)外延层,可用于制造MOS电容。通过薄膜应力测量系统FLX-2320-S......阅读全文

应力诱导曲率对4HSiC-MOS平带电压和界面态密度的影响

碳化硅(SiC)上的栅氧化膜会严重影响SiC金属氧化物半导体场效应晶体管(MOSFET)的性能。本文作者通过电容 - 电压(C-V)测试研究了应力/应变引起的曲率对栅氧界面态密度(Dit)的影响。外延晶片的曲率通过薄膜应力测量系统进行测试。在干热氧化过程中,压缩/拉伸曲率导致SiO2

表面态对mos结构cv特性影响

因为半导体表面态是关系到少数载流子浓度的改变,而少数载流子存在有一定的复合寿命和产生寿命,浓度变化不是瞬间能完成的,所以表面态对mos结构cv特性影响,主要表现在对cv特性曲线形状的影响:使得强反型时的低频cv曲线上升到氧化层电容值,同时使得cv曲线沿着电压方向有所延伸,而且曲线变得不平滑、呈现出波

伺服密度计液位界面测量

  weixinhao:tongi250  技术参数:  DUTI 454.2.OE. SERVO  Optical Encoder  -2 mm  Level up to 25 m  Density range: 650-1000 kg/m3  Accuracy: 0.3 kg/m3  Measu

有机电荷转移分子调控二维材料电学特性研究取得进展

  近日,中国科学院微电子研究所在有机电荷转移分子调控二维材料电学特性研究中取得新进展。  薄层过渡金属二硫化物(TMDCs)以其独特的电学、光电、机械和磁学特性为探索低维系统中的新物理特性和应用途径提供了一个新的平台。其中,在场效应晶体管应用中,少层二硫化钼(MoS2)可以突破传统半导体材料的短沟

MoS2边缘态以及载流子扩散和解离动力学研究获进展

  中国科学院国家纳米科学中心研究员刘新风团队联合国家纳米科学中心研究员张勇团队和中科院物理研究所研究员孟胜团队合作,研究了球磨法制备的不同横向尺寸(10 nm-160 nm) 的MoS2的边缘态,激子扩散及解离的动力学过程,为光电子学和光捕获应用奠定了基础。相关成果发表在Nano Letters上

伺服密度计液位计界面测量仪

  伺服密度计254型:该型号密度计适用于高粘度液体可进行高精度的连续测量,测量中自动补偿温度,该密度计安装简单,易于清洁,应用范围广,可用于石油产品交接自动化系统;炼油工艺过程自动化检测系统;储罐混合搅拌、加热、供油系统;其他经常变换密度、浓度和温度的技术领域.  针对当前国内油品计量采用混合式油

微电子所在氮化镓界面态研究方面取得进展

  近日,中国科学院微电子研究所高频高压中心研究员刘新宇团队等在GaN界面态研究领域取得进展,在LPCVD-SiNx/GaN界面获得原子级平整界面和国际先进水平的界面态特性,提出了适用于较宽能量范围的界面态U型分布函数,实现了离散能级与界面态的分离。  增强型氮化镓MIS-HEMT是目前尚未成功商用

半导体器件界面态及其稳定性问题分析

在半导体器件中,界面态是影响器件性能和稳定性的重要因素。界面态是指在半导体与金属或半导体与绝缘体之间的接触面上形成的能级。这些界面态在半导体器件中的存在对电子传输、电荷注入和空间电荷区域的形成有着重要影响,从而对器件的性能和稳定性产生显著影响。界面态的稳定性问题在半导体器件研究中被广泛关注。首先,界

苏州纳米所等制备出高性能纤维状铵根离子赝电容负极

铵根离子作为非金属离子,具有安全性高、摩尔质量低、水合离子半径小、离子电导率高、资源丰富等特点,在可穿戴水系超级电容器中表现出较大优势。高能量密度柔性铵根离子非对称超级电容器的应用前景广阔,但由于缺乏高容量赝电容负极相关研究,发展高能量密度的铵根离子非对称超级电容器仍具有挑战性。近日,中国科学院苏州

微电子所在高迁移率沟道MOS器件研究方面取得进展

  中国科学院微电子研究所高频高压器件与集成研发中心研究员刘洪刚、副研究员王盛凯带领CMOS研究团队在国家科技重大专项02专项、国家“973”课题和国家自然科学基金等项目的支持下,对high-k/III-V、high-k/Ge界面的缺陷行为及控制方法开展了系统研究,经过近5年的持续攻关,取得了重要的

新研究通过调控原子界面催化过程实现高效储钠

近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究组(509组)邓德会研究员团队与郑州大学张佳楠教授团队合作,通过界面化学工程将二维2H-MoS2纳米片组装在氮掺杂碳限域的铁原子催化剂(Fe(SA)-N-C)载体上,并将其作为钠离子电池的负极材料,在Fe(SA)-N-C

上海微系统所开发出面向二维集成电路的单晶金属氧化物栅介质晶圆

中国科学院上海微系统与信息技术研究所研究员狄增峰团队在面向低功耗二维集成电路的单晶金属氧化物栅介质晶圆研制方面取得进展。8月7日,相关研究成果以《面向顶栅结构二维晶体管的单晶金属氧化物栅介质材料》(Single-crystalline metal-oxide dielectrics for top-

调控原子界面催化过程可实现高效储钠

  在“双碳”目标下,可再生能源逐步成为能源消费增量的主体。在推动可再生能源利用的关键技术中,储能技术的发展已成为实现“双碳”目标的重要支撑技术之一。近日,中国科学院大连化学物理研究所研究员邓德会团队与郑州大学教授张佳楠团队合作,在储能技术领域又有新突破。团队通过界面化学工程将二维2H-MoS2纳米

我所通过调控原子界面催化过程实现高效储钠

近日,中科院大连化物所催化基础国家重点实验室能源与环境小分子催化研究组(509组)邓德会研究员团队与郑州大学张佳楠教授团队合作,通过界面化学工程将二维2H-MoS2纳米片组装在氮掺杂碳限域的铁原子催化剂(Fe(SA)-N-C)载体上,并将其作为钠离子电池的负极材料,在Fe(SA)-N-C的催化作用下

大连化物所通过调控原子界面催化过程实现高效储钠

   近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究组(509组)邓德会研究员团队与郑州大学张佳楠教授团队合作,通过界面化学工程将二维2H-MoS2纳米片组装在氮掺杂碳限域的铁原子催化剂(Fe(SA)-N-C)载体上,并将其作为钠离子电池的负极材料,在Fe(SA)-

基于石墨烯的高速度与高增益复合隧穿光电探测器

  近年来,由高效吸光材料(如量子点、碳纳米管和钙钛矿)和石墨烯形成的复合光电探测器受到广泛的关注。吸光材料中的光生载流子能有效地转移到高迁移率的石墨烯通道中,从而实现超高光响应增益。然而,由于吸光材料与石墨烯界面处存在大量陷阱态,这种光电探测器的响应速度通常较慢,制约了其在高频场景下的应用。  最

MOS-450波长的校正

MOS 450波长的校正仪器使用一段时间后需要对仪器进行波长校正,以保证测量的准确性,波长校正的操作步骤如下:1、 确认样品仓中没有任何样品和样品池。2、 根据光源选择的操作说明,将光源换为Xe(Hg)灯。3、 打开ALX-250、MM-450和PMS-450电源。4、 点击电脑中的BioKine软

物理所发现范德华异质结间的强耦合超快电荷传输

  近年来,以石墨烯为代表、靠层间范德华力结合的二维材料已经成长为一个非常大的家族。这些范德华材料呈现出从绝缘体、半导体、金属,到超导体等各不相同的电子性质。以二硫化钼(MoS22)和二硫化钨(WS22)为代表的过渡族金属硫族化合物,因其合适的能带结构和光学性质,在光电子器件等用途中有着很好的应用前

原子层沉积技术可用于合金提升态密度有效质量

中国科学院院士、西安交通大学材料学院材料强度组孙军教授,材料强度组丁向东教授、武海军教授与深圳大学合作,在探究相界面工程作用于ZrNiSn基半哈斯勒热电材料取得进展。该工作鉴于现有研究中相界面引发的载流子迁移率降低问题,以及单一能量势垒无法在全温度范围内提升态密度有效质量的局限性,团队创新性地将原子

半导体所等在转角双层MoS2的moiré声子研究中取得进展

  基于二维材料的范德瓦尔斯异质结(vdWHs)可以通过化学气相沉积(CVD)或者干/湿转移法制备。它们通常具有明显且高质量的二维界面,为研究界面相关的性质提供了一个优质平台。另外,vdWHs中子系统成分、样品厚度以及界面旋转角的多样选择也为操控它们的光学和电学性质提供了更多自由度。其中,由于单层过

科学家攻克二维半导体欧姆接触难题

1月11日,南京大学教授王欣然、施毅带领国际合作团队在《自然》上以《二维半导体接触接近量子极限》为题发表研究成果。该科研团队通过增强半金属与二维半导体界面的轨道杂化,将单层二维半导体MoS2的接触电阻降低至42Ω·μm,超越了以化学键结合的硅基晶体管接触电阻,并接近理论量子极限,该成果解决了二维半导

新年第一篇!南京大学成果登Nature

  下一代电子技术的发展需要将通道材料厚度缩小到二维极限,同时保持超低的接触电阻。过渡金属二卤属化合物可以维持晶体管扩展到路线图的结束,但尽管有无数的努力,器件性能仍然受到接触限制。特别是,由于固有的范德华间隙,接触电阻还没有超过共价结合的金属-半导体结,最好的接触技术面临稳定性问题。  2023年

MOS场效应管概述

  即金属-氧化物-半导体型场效应管,英文缩写为MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟

MOS450光源的选择

 1、电源:图1中的Lamp power supply处有Xe(红色)、Xe(Hg)(红色)、零线(黑色)三个插孔。零线插头为黑色,直接插到黑色的零线插孔中。火线插头为红色,在做圆二色、紫外、荧光的光谱扫描时插在Xe(红色)插孔中,在做快速动力学测量的时候插在Xe(Hg)插孔中。 2、光源选择:图2

山西大学发现量子霍尔态的界面电荷序调控新机制

近日,山西大学光电研究所量子光学与光量子器件国家重点实验室韩拯教授课题组实现了一种垂直电场调控的准二维界面局域电子态,进而通过库伦相互作用对石墨烯自身能带产生有效调控并在磁场下呈现新奇量子霍尔态。研究以“石墨烯中量子霍尔相的界面电荷耦合操控”(Quantum Hall phase in graphe

Science:研发的钙钛矿太阳能电池及模块效率高达26.2%和22.8%

  1月10日,西安电子科技大学集成电路学部苏杰副教授为共同第一作者、常晶晶教授为共同作者和合作作者及单位于《科学》(Science)在线发表关于实现钙钛矿太阳能电池商业化取得重要突破的研究成果。  目前钙钛矿太阳能电池商业化的主要挑战之一是实现高功率转换效率(PCE)和长期稳定性。而优化其转化效率

研究发现量子材料中新型电子态:共生电荷密度波

近日,香港科技大学(广州)先进材料学域助理教授李昊翔和合作团队,研究发现量子材料中的一种新型电子态——共生电荷密度波。相关研究发表于《自然—通讯》。 在固体材料中,由电子组成的多种量子序之间的相互作用会产生很多有趣的新型电子态与电学性质。而电荷密度波,作为一类周期性分布的电荷态,是量子材料

我国科学家发现狄拉克半金属自旋密度波态

  复旦大学物理学系修发贤课题组通过研究狄拉克半金属ZrTe5在强磁场下的输运性质,首次观测到一种新奇的磁场诱导的自旋密度波态,这一发现为狄拉克半金属的研究提供了新的角度和思路。相关研究成果发表于《自然通讯》。  狄拉克半金属具有和石墨烯相似的能带结构,它展现出高磁阻、高迁移率等优良电学性质。大量理

光辅助提升固态锂氧电池的阴极界面反应可逆性研究

固态锂氧(Li-O2)电池(SSLOB)兼具有超高的理论能量密度和优异的安全性,作为下一代储能系统具有巨大的发展潜力。但较大的阴极反应过电位和缓慢的阴极反应动力学一直阻碍着固态锂-氧电池的发展。光辅助策略可以显著降低过电位,其中阴极材料上具有匹配能级的光激发电子(e-)/空穴(h+)有效地辅助催化放

哈工大学子获首届中国材料研究学会优秀博士论文奖

  日前,在首届中国材料研究学会材料学科优秀博士论文颁奖典礼上,哈尔滨工业大学材料学院甄良教授指导的2016届博士毕业生李洋撰写的题为《MoS2、WSe2二维材料及相关异质结的电学与光学性质》博士学位论文成为10篇入选论文之一。  该论文从二维材料与金属的电接触行为出发,研究了MoS2纳米片功函数随