备受看好的氧化镓材料是什么来头?(二)

行业的领先厂商 既然这个材料拥有这么领先的性能,自然在全球也有不少的公司投入其中。首先看日本方面,据半导体行业观察了解,京都大学投资的Flosfia、NICT和田村制作所投资的Novel Crystal是最领先的Ga2O3供应商。 相关资料显示,Flosfia成立于2011年3月,由京都大学研究人员Toshimi Hitora,Shizuo Fujita和Kentaro Kaneko共同创立,不同于世界其他地区对GaN或SiC外延生长的方法研究,Flosfia的研究人员开发了一种新型的制备方法,它是将氧化镓层沉积于蓝宝石衬底上来制备功率器件。这主要依赖于其一项名为“Mist Epitaxy”(喷雾干燥法)的化学气相沉积工艺。 Mist Epitaxy简单介绍 我们知道,传统的化学气相沉积法(Chemical Vapor Depositi......阅读全文

备受看好的氧化镓材料是什么来头?-(一)

日前,据日本媒体报道,日本经济产业省(METI)计划为致力于开发新一代低能耗半导体材料“氧化镓”的私营企业和大学提供财政支持。报道指出,METI将为明年留出大约2030万美元的资金去资助相关企业,预计未来5年的资助规模将超过8560万美元。   众所周知,经历了日美“广场协定”的日本

备受看好的氧化镓材料是什么来头?-(二)

行业的领先厂商   既然这个材料拥有这么领先的性能,自然在全球也有不少的公司投入其中。首先看日本方面,据半导体行业观察了解,京都大学投资的Flosfia、NICT和田村制作所投资的Novel Crystal是最领先的Ga2O3供应商。   相关资料显示,Flosfia成立于20

砷化镓材料的材料特性

GaAs拥有一些较Si还要好的电子特性,使得GaAs可以用在高于250 GHz的场合。如果等效的GaAs和Si元件同时都操作在高频时,GaAs会产生较少的噪音。也因为GaAs有较高的崩溃压,所以GaAs比同样的Si元件更适合操作在高功率的场合。因为这些特性,GaAs电路可以运用在移动电话、卫星通讯、

氮化镓半导体材料的应用前景

对于GaN材料,长期以来由于衬底单晶没有解决,异质外延缺陷密度相当高,但是器件水平已可实用化。1994年日亚化学所制成1200mcd的 LED,1995年又制成Zcd蓝光(450nmLED),绿光12cd(520nmLED);日本1998年制定一个采用宽禁带氮化物材料开发LED的 7年规划,其目标是

砷化镓材料的研究进展

砷化镓于1964年进入实用阶段。砷化镓可以制成电阻率比硅、锗高3个数量级以上的半绝缘高阻材料,用来制作集成电路衬底、红外探测器、γ光子探测器等。由于其电子迁移率比硅大5~6倍,故在制作微波器件和高速数字电路方面得到重要应用。用砷化镓制成的半导体器件具有高频、高温、低温性能好、噪声小、抗辐射能力强等优

氮化镓半导体材料的优点与缺陷

①禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强;②导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和);③GaN易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁

氧化镓半导体器件领域研究取得重要进展

  12日,记者从中国科学技术大学获悉,日前在美国旧金山召开的第68届国际电子器件大会(IEEE IEDM)上,中国科大国家示范性微电子学院龙世兵教授课题组两篇关于氧化镓器件的研究论文(高功率氧化镓肖特基二极管和氧化镓光电探测器)被大会接收。  IEEE IEDM是一个年度微电子和纳电子学术会议,是

氧化镓半导体器件领域研究取得重要进展

原文地址:http://news.sciencenet.cn/htmlnews/2022/12/491041.shtm 科技日报合肥12月12日电 (记者吴长锋)12日,记者从中国科学技术大学获悉,日前在美国旧金山召开的第68届国际电子器件大会(IEEE IEDM)上,中国科大国家示范性微电子学

氮化镓半导体材料新型电子器件应用

GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效

氮化镓半导体材料光电器件应用介绍

GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批

氧化镓和碳化硅功率芯片的技术差异

SiC(碳化硅)商业化已经20 多年了,GaN 商业化还不到5 年时间。因此人们对GaN 未来完整的市场布局并不是很清楚。SiC 的材料特性是能够耐高压、耐热,但是缺点是频率不能高,所以只能做到效率提升,不能做到器件很小。现在很多要做得很小,要控制成本。而GaN 擅长高频,效率可以做得非常好。例如,

氮化镓半导体材料的反应方程式

GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,其可逆的反应方程式为:Ga+NH3=GaN+3/2H2生长GaN需要一定的生长温度,且需要一定的NH3分压。人们通常采用的方法有常规MOCVD(包括APMOCVD、LPMOCVD)、等离子体增强MOCVD(PE—MOCVD

我国学者在非晶氧化镓导热领域取得进展

图 非晶氧化镓的密度、组分比及结构描述器SSF与热导率之间的关系  在国家自然科学基金项目(批准号:51825601、U20A20301)资助下,清华大学曹炳阳教授团队及合作者在非晶氧化镓导热领域取得进展。研究成果以“结合机器学习与实验揭示非晶氧化镓原子结构与热输运性质的相关性(Unraveling

氧化镓功率电子器件领域新进展,入选ISPSD

近日,中国科大微电子学院龙世兵教授课题组两篇论文入选第34届功率半导体器件和集成电路国际会议(ISPSD,全称为:IEEE International Symposium on Power Semiconductor Devices and ICs)。ISPSD是功率半导体器件和集成电路领域国际顶级

挪威研制最新半导体新材料砷化镓纳米线

  挪威科技大学的研究人员近日成功开发出一种新型半导体工业复合材料“砷化镓纳米线”,并申请了技术ZL,该复合材料基于石墨烯,具有优异的光电性能,在未来半导体产品市场上将极具竞争性,这种新材料被认作有望改变半导体工业新型设备系统的基础。该项技术成果刊登在美国科学杂志纳米快报上。   以Helge W

我国科研人员为氧化镓晶体管找到新结构方案

26日,记者从中国科学技术大学获悉,该校微电子学院龙世兵教授课题组联合中科院苏州纳米所加工平台,分别采用氧气氛围退火和氮离子注入技术,首次研制出了氧化镓垂直槽栅场效应晶体管。相关研究成果日前分别在线发表于《应用物理通信》《IEEE电子设备通信》上。 作为新一代功率半导体材料,氧化镓的p型掺杂目前

中国电科46所成功制备6英寸氧化镓单晶

近日,中国电科46所成功制备出我国首颗6英寸氧化镓单晶,达到国际最高水平。 氧化镓是新型超宽禁带半导体材料,拥有优异的物理化学特性,在微电子与光电子领域均拥有广阔的应用前景。但因具有高熔点、高温分解以及易开裂等特性,因此,大尺寸氧化镓单晶制备极为困难。 中国电科46所氧化镓团队聚焦多晶面、大

氮化镓植于石墨烯可制成随意折叠变形的LED材料

  目前,许多由有机材料制造的电子和光电子材料都具备良好的柔韧度,易于改变形状。与此同时,不易形变的无机化合物在制造光学、电气和机械元件方面展现出了强大的性能。但由于技术原因,二者却很难优势互补,功能优异的无机化合物半导体也因不易塑形的特点而遇到了发展障碍。  幸好,氮化镓与石墨烯的结合,部分实现了

镓氮砷合金材料太阳能电池效率达40%

  硅太阳能电池的效率一般只能达到20%,效率更高的电池都很复杂,也很昂贵。据美国物理学家组织网1月24日报道,美国劳伦斯·伯克利国家实验室科研人员伍雷戴克·瓦卢克维领导的研究小组,用一种名为镓氮砷(GaNAs)合金的特殊材料和简单的组合方法,使他们制造的多带型太阳能电池效率达到40%

新型半导体工业复合材料“砷化镓纳米线”获得技术ZL

  近日挪威科技大学的研究人员成功开发出一种新型半导体工业复合材料“砷化镓纳米线”,并申请了技术ZL,该复合材料基于石墨烯,具有优异的光电性能,在未来半导体产品市场上将极具竞争性,这种新材料被认作有望改变半导体工业新型设备系统的基础。该项技术成果刊登在美国科学杂志纳米快报上。   以Helge

镓储备不足-美国国防部决定从“废品”中回收镓

  财联社7月27日讯 美国国防部计划在年底前首次与美国或加拿大公司签订有关回收镓的合同,镓是一种用于半导体和军用雷达的矿物。  7月3日,中国商务部、海关总署宣布,为维护国家安全和利益,决定自2023年8月1日起对镓和锗两种关键金属实行出口管制。  本月早些时候,在被问及这两种关键金属的储备情况时

原子尺度调节镓锌混合氮氧化物纳米线能带结构新研究

  近日,中国科学院国家纳米科学中心研究员宫建茹与南京航空航天大学教授宣益民、中科院高能物理研究所研究员张静合作,在原子尺度调节 (Ga1-xZnx)(N1-xOx) 固溶体纳米线能带结构研究方面取得新进展,1月21日,相关研究成果以Atomic arrangement matters: band-

镓是什么意思

镓的意思是金属元素,符号Ga(gallium)。镓(Gallium)是灰蓝色或银白色的金属,符号为Ga,原子量69.723。镓熔点很低,但沸点很高,在空气中易氧化,形成氧化膜,纯液态镓有显著的过冷的趋势,可由铝土矿或闪锌矿中提取,最后经电解制得纯净镓,适合使用塑料瓶(不能盛满)储存。布瓦博得朗没有意

锑化镓的应用

锑化镓(GalliumAntimonite,GaSb)是III-V族化合物半导体,属于闪锌矿、直接带隙材料,其禁带宽度为0.725eV(300K),晶格常数为0.60959nm。GaSbChemicalbook具有优异的物理化学性能,常被用做衬底材料,应用于8~14mm及大于14mm的红外探测器和激

国家标准氮化镓材料中镁含量的测定二次离子质谱法

1国家标准《氮化镓材料中镁含量的测定二次离子质谱法》编制说明(预审稿)一、工作简况1.立项的目的和意义GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SiC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP

第三代半导体材料氮化镓(GaN)技术与优势详解(四)

  经过 频谱分析仪和LISN测试,该设计的EMI符合EN55022B标准,并通过2.2 kV共模模式和1.1 kV 差分模式的浪涌测试。输入电压为115 Vac和230 Vac时,系统峰值效率分别超过95%和94%。该参考设计较现有采用硅的216 W电源参考设计减小25%的尺寸,提升2%的

第三代半导体材料氮化镓(GaN)技术与优势详解(二)

  Cascode相当于由GaN HEMT和低压MOSFET组成:GaN HEMT可承受高电压,过电压能力达到750 V,并提供低导通电阻,而低压MOSFET提供低门极驱动和低反向恢复。HEMT是高电子迁移率晶体管的英文缩写,通过二维电子气在横向传导电流下进行传导。图1:GaN内部架构及

第三代半导体材料氮化镓(GaN)技术与优势详解(三)

  设计注意事项  采用GaN设计电源时,为降低系统EMI,需考虑几个关键因素:首先,对于Cascode结构的GaN,阈值非常稳定地设定在2 V,即5 V导通,0 V关断,且提供±18 V门极电压,因而无需特别的驱动器。其次,布板很重要,尽量以短距离、小回路为原则,以最大限度地减少元

第三代半导体材料氮化镓(GaN)技术与优势详解(一)

  第三代 半导体材料——氮化镓( GaN),作为时下新兴的半导体工艺技术,提供超越硅的多种优势。与硅器件相比,GaN在 电源转换效率和功率密度上实现了性能的飞跃,广泛应用于 功率因数校正(PFC)、软开关 DC-DC等电源系统设计,以及电源适配器、光伏 逆变器或 太阳能逆变器、服务

EDTA络合滴定法测定金镓合金中的镓

一、方法要点试样用盐酸和硝酸溶解,加盐酸蒸发驱除硝酸,用亚硫酸还原金。加一定过量的EDTA溶液络合镓,在pH5.8的六亚甲基四胺缓冲溶液中,以二甲酸橙作指示剂,用锌标准溶液返滴定以测定镓量。本法适用于分析金镓合金中3%~5%的镓。二、试剂(1)氯化钠、六亚甲基四胺。(2)二甲酚橙:0.2%溶液。(3