诺奖得主小柴昌俊是如何成功探测到中微子

11月12日,日本实验高能物理学家小柴昌俊去世。 小柴昌俊生于1926年,因为对“宇宙中微子探测”的贡献,与戴维斯(Ray Davis Jr.)分享了2002年诺贝尔物理学奖的一半,另一半授予了对宇宙X射线探测做出重要贡献的贾科尼(R. Giacconi)[1]。 小柴昌俊是一位杰出的科学家,对中微子实验物理做出了重大贡献,神冈和超级神冈中微子探测实验都源自他的想法和努力。他也培养了一批优秀的学生,其中梶田隆章因超级神冈实验发现的中微子振荡而分享2015年物理诺奖。日本神冈中微子探测实验中的光电倍增管阵列。光电倍增管(Photo Multiplier Tube,简称PMT)可以将极微弱的光信号转换成电信号输出,并获得惊人的电子倍增能力。图源:http://www-sk.icrr.u-tokyo.ac.jp/sk/library/image-e.html 1 神冈和超级神冈中微子探测实验 中微子是很重要的基本......阅读全文

诺奖得主小柴昌俊是如何成功探测到中微子

  11月12日,日本实验高能物理学家小柴昌俊去世。  小柴昌俊生于1926年,因为对“宇宙中微子探测”的贡献,与戴维斯(Ray Davis Jr.)分享了2002年诺贝尔物理学奖的一半,另一半授予了对宇宙X射线探测做出重要贡献的贾科尼(R. Giacconi)[1]。  小柴昌俊是一位杰出的科学家

日本加拿大科学家获诺贝尔物理学奖

  瑞典皇家科学院6日宣布,将2015年诺贝尔物理学奖授予日本科学家梶田隆章和加拿大科学家阿瑟·麦克唐纳,以表彰他们在发现中微子振荡方面所作的贡献。两人将平分800万瑞典克朗(约合92万美元)的诺贝尔物理学奖奖金。  “隐身人”也有质量  据该奖评审委员会介绍,梶田隆章在15年前介绍了某种中微子从宇

紫外/可见/近红外探测器

紫外/可见/近红外探测器成立于1953年的日本滨松光子学株式会社(以下简称滨松集团),是世界上科技水平最高、市场占有率最大的光科学、光产业公司。使用滨松集团11200支 20英寸光电倍增管的东京大学小柴昌俊教授的中微子实验获得2002年的诺贝尔物理学奖。滨松集团的产品被广泛的应用在医疗生物、

光电倍增管的组成部分和优点

  组成部分  光电倍增管可分成4个主要部分,分别是:光电阴极、电子光学输入系统、电子倍增系统、阳极。  优点  电倍增管是进一步提高光电管灵敏度的光电转换器件。管内除光电阴极和阳极外,两极间还放置多个瓦形倍增电极。使用时相邻两倍增电极间均加有电压用来加速电子。光电阴极受光照后释放出光电子,在电场作

“高山”之巅:1998年那个中微子物理学的春天

1998年6月4日至9日,中微子物理学界的盛会NEUTRINO’98在日本高山(Takayama)召开,它开启了中微子物理学的春天。在随后的20年间,中微子振荡实验取得了一个又一个突破性的成果。回过头来看,那次会议的规格之高和历史意义之深远,怎么说都不过分。 当年参加NEUTRINO’98会议的诺贝

日本引力波望远镜开始试运行

  日本大型低温引力波望远镜(KAGRA)25日开始试运行,预计2017年正式投入使用。  KAGRA位于岐阜县一个矿山地下,由日本高能加速器研究机构和东京大学宇宙射线研究所等设计建造。该矿山中还有著名的“超级神冈”大型中微子探测器,日本科学家小柴昌俊、梶田隆章等人曾因在此进行的中微子研究先后获得诺

诺贝尔奖亲睐寿星?

  诺贝尔奖亲睐寿星?  施郁(复旦大学物理学系教授)  1. 为什么引力波诺奖得主年龄较大  2017年诺贝尔物理学奖授予了对首次直接探测引力波作出杰出贡献的雷纳·韦斯(Rainer Weiss)、巴里•巴里什(Barry Clark Barish)和基普·索恩(Kip Stephen Thorn

光谱仪闪烁氙灯-HPX1

闪烁氙灯 HPX-1成立于1953年的日本滨松光子学株式会社(以下简称滨松集团),是世界上科技水平最高、市场占有率最大的光科学、光产业公司。使用滨松集团11200支 20英寸光电倍增管的东京大学小柴昌俊教授的中微子实验获得2002年的诺贝尔物理学奖。滨松集团的产品被广泛的应用在医疗生物、高能

中微子振荡问鼎诺贝尔奖-粒子物理新篇开启

  10月6日下午,诺贝尔物理学奖揭晓。日本科学家梶田隆章(Takaaki Kajita)和加拿大科学家阿瑟•麦克唐纳(Arthur B. McDonald)获奖,原因是发现了中微子振荡,证实了中微子有质量。  粒子物理,可谓诺贝尔物理学奖的“宠儿”。“这是粒子物理领域第19次获得诺贝尔物理学奖。”

中微子振荡问鼎诺贝尔奖-粒子物理新篇开启

10月6日下午,诺贝尔物理学奖揭晓。日本科学家梶田隆章(TakaakiKajita)和加拿大科学家阿瑟•麦克唐纳(Arthur B. McDonald)获奖,原因是发现了中微子振荡,证实了中微子有质量。 粒子物理,可谓诺贝尔物理学奖的“宠儿”。“这是粒子物理领域第19次获得诺贝尔物理学

这一发现让他们3人摘得2019年诺贝尔物理学奖!

  2019年10月8日,瑞典斯德哥尔摩,瑞典皇家科学院宣布,吉姆·皮布尔斯(James Peebles)、米歇尔·麦耶(Michel Mayor)和迪迪埃·奎洛兹(Didier Queloz),以奖励他们在天体物理学方面的发现。获奖理由:加拿大-美国物理学家吉姆·皮布尔斯的获奖理由是物理宇宙学的理

日本2019财年科学预算要超百亿美元?

日本2019财年科学预算要超百亿美元?超算、中微子探测器等基础研究大项目最“受宠”图片均来自网络美国《科学》杂志官网在9月4日的报道中指出,尽管日本政府正面临着严峻的财政挑战,但其科学部门仍希望国家能再次大力支持基础研究。日本文部科学省(MEXT)近日提出了一项超百亿美元的雄心勃勃的预算提案,希望政

山中伸弥或问鼎本年度诺贝尔医学奖

山中伸弥    据国外媒体报道,2010年诺贝尔医学或生理学奖于格林尼治时间10月4日9时30分(北京时间4日17时30分)揭晓。在这个即将到来的万众瞩目的时刻,瑞典主流新闻媒体《 Dagens Nyheter》负责科学报道方面的首席记者预测,2006年8月成功从小鼠成体细胞中获得与胚胎干细胞

诺贝尔奖得主谈心目中的中微子

  “中微子质量是相应的夸克和带电轻子质量的百亿分之一。我们相信这一发现可以更好地帮助我们揭开基本粒子和宇宙的奥秘。”17日上午,在第九届全球华人物理学大会上,诺贝尔物理学奖获得者、东京大学宇宙线研究所所长梶田隆章与大家分享了他所理解的中微子。  会上,梶田隆章教授说,中微子是像电子、夸克一样必要的

刘昌俊委员:高度重视报废汽车环境污染

这次,全国政协委员、天津大学教授刘昌俊是连任全国政协委员。上届政协履职工作中,他结合自己从事的能源环境研究,提出了几个受到关注的提案,“关于应对报废汽车相关土地资源与环境问题的建议”就是其中之一。“立足本职岗位,做好调查研究,就熟悉领域有针对性提出好的建议才能形成一个好提案。”刘昌俊对《中国科学报》

光电倍增管闪烁计数器

1903年有人发现 α粒子照射在硫化锌粉末上可产生荧光的现象。1911年,卢瑟福将玻璃面上涂一层硫化锌的观测屏用于α 粒子散射实验,通过屏上的荧光闪烁,证实原子的核结构。  1929年科勒(L.R.Koehler)制成了第一种实用光电阴极——银氧铯阴极,从此出现了光电管(phototube)。193

2007年诺贝尔物理学奖揭晓

法德两国科学家因发现巨磁电阻现象分享该奖 北京时间10月9日下午5点45分,2007年诺贝尔物理学奖揭晓,法国国家科学研究中心(CNRS)的物理学家Albert Fert和德国于利希研究中心的物理学家Peter Grünberg因发现巨磁电阻(Giant Magnetoresistance)现象而获

日本为何能获这么多诺贝尔奖,背后的教育启示令人深思

  【导读】日本的诺贝尔奖获得者人数达到了22人(包括2008年获奖的美国国籍的南部阳一郎和今年的诺贝尔奖获得者)。除了经济学尚没有获奖者外,其余学科领域(物理学、化学、文学、生理学或医学、和平)均有人获奖,其中物理学有10人之多,化学也达到了7人。人们不禁要问:日本人为何屡获诺贝尔奖?下面给大家分

大亚湾新发现:也许我们算错了核反应

   在大亚湾核电站附近几百米的深山里,潜伏着世界上最好的中微子探测器。它本是用来确认中微子的第三种变身模式的,几年前已经完成任务。如今顺手取得另一项引人瞩目的成果——解释核反应堆为何产生那么少的中微子。  近日,大亚湾反应堆中微子实验的论文《大亚湾反应堆中微子流强和能谱的演化》在《物理评论快报》上

蒋昌俊院士:中国式创新需要坚持系统论观念

原文地址:http://news.sciencenet.cn/htmlnews/2023/8/506186.shtm

记柯俊院士:金属物理奠基人

  “我来自东方,那里有成千上万的人民在饥饿线上挣扎,一吨钢在那里的作用,远远超过一吨钢在英美的作用,尽管生活条件远远比不过英国和美国,但是物质生活并不是唯一的,更不是最重要的。”柯俊 1917年出生于吉林省长春市,祖籍浙江省黄岩县。北京科技大学教授,中国科学院院士。多年从事合金中相

诺奖委员会错了?2015年诺贝尔物理学奖描述有误

  在一篇不同寻常的论文中,一位著名理论物理学家表示2015年诺贝尔物理奖的介绍是错误的。意大利里雅斯特市国际理论物理研究中心的Alexei Smirnov说,当时,两位获奖者因领衔中微子的庞大实验而获得该奖项。但诺贝尔委员会用简洁有力的文字描述了其中一个实验的研究结果,但这个只有12个单词的描述是

《物理评论快报》在线发表大亚湾中微子实验论文

  3月8日,大亚湾中微子实验国际合作组发言人王贻芳在中科院高能物理研究所宣布发现新的中微子振荡模式。该实验达到了前所未有的精度,测得第三种中微子振荡模式的振荡幅度为9.2%,误差为1.7%,无振荡的可能性只有千万分之一。   4月23日,关于该成果的论文《大亚湾中微子实验发现电子反中微子消失》(

“大亚湾中微子实验的物理研究”项目启动会召开

  2月6日,国家重点基础研究计划(973计划)项目“大亚湾中微子实验的物理研究”项目启动会在广东大亚湾召开,科技部副部长陈小娅等出席项目启动会。   科技部基础司、条财司,深圳市创新委等相关部门领导,中国原子能院、高能所相关院士等出席项目启动会。高能所所长、首席科学家王贻芳首先致欢

探秘地下700米的中微子实验室

  8月的一天,广东江门开平市金鸡镇,斜井缆车在幽闭的隧道中行进,约15分钟后,新京报记者从地面到达了地下700多米处的井底。没有想象中那么凉爽,这里的岩石温度达到31℃,空气闷热高湿。  换上洁净衣、在风淋室吹淋后,通往实验大厅的大门缓缓开启,随着一座巨型钢架矗立在眼前,大科学装置——江门中微子实

μ中微子“变身”τ中微子直接证据找到

  意大利格兰·萨索国家实验室的OPERA(采用乳胶径迹装置的振荡实验项目)实验组表示,他们首次捕获到了μ中微子“变身”为τ中微子的直接证据。  2011年9月,OPERA实验组宣布,发现中微子的行进速度超过了光速。此言一出,引发公众一片哗然,因为这显然违背了爱因斯坦的狭义相对论。实验组随后在测量中

中微子新振荡:中国物理学界能否摘诺奖

诺贝尔物理学奖得主李政道给大亚湾中微子实验组负责人发来的贺信。  这是在没有灌装闪烁液之前的圆柱形反中微子探测器内部照片。该探测器用于捕捉反中微子产生的微弱闪光。高灵敏的光电倍增管排列在探测器的壁上。  由于粒子物理学在破解宇宙之谜中具有特殊重要地位,所以该研究领域的每一项重大进展都

王贻芳实验团队获基础物理学突破奖

  科技日报北京11月9日电 美国旧金山时间11月8日下午7时,2016年科学突破奖(Breakthrough Prizes)在美国加州硅谷美国宇航局艾姆斯研究中心揭晓。中国科学院高能物理研究所王贻芳研究员、美国伯克利国家实验室陆锦标教授及大亚湾中微子实验团队获2016年基础物理学突破奖。这是中国科

诺贝尔物理学奖临近:谁将“续写”物理教科书?

  在诺贝尔写于1895年、要求设立五大领域奖项的遗嘱中,物理学是他最先提到的领域。诺贝尔要求物理学奖被授予“在物理学领域作出最重要发现或发明的人”。   诺奖的官方网站称,在19世纪末,许多人认为物理学是最重要的科学,诺贝尔本人可能也抱有这样的看法。尽管一般被称作化学家,但诺贝尔自己的研究

汪小琳柴之芳:让放射化学放射新光芒

  放射化学是研究放射性物质及其辐射效应的一门化学分支学科。从19世纪末法国科学家贝可勒尔发现第一个天然放射性元素铀、居里夫妇发现放射性元素钋和镭,到20世纪上半叶小居里夫妇发现人工放射性,哈恩发现铀核裂变,开创了崭新的核时代。随后放射化学应用于核武器、核能、核电,再到现代将放射性同位素应用于生物医