BLT小课堂丨植物蛋白互作技术(一)
植物蛋白互作技术我们的世界物种多种多样,而与我们人类生存关系最密切的就是植物。随着时间的推移与科技的进步,人类在逐步揭示自身基因真相的同时,也在不断探寻植物基因的种种功能。其中,蛋白质是植物生命活动的主要承担者。因此,在植物学相关研究中,蛋白质之间的相互作用是研究的重要基础和手段。目前,研究蛋白质-蛋白质相互作用常用方法主要包括:酵母双杂交技术 (Yeast Two-hybrid, Y2H)、双分子荧光互补技术(Bimolecular Fluorescence Complementation, BiFC)、免疫共沉淀技术(Co-Immunoprecipitation, CoIP)及荧光共振能量转移技术(Fluorescence Resonance Energy Transfer, FRET)等,以及近几年来逐步应用到的萤火虫荧光素酶互补技术(Firefly luciferase complementa......阅读全文
BLT小课堂丨植物蛋白互作技术(一)
植物蛋白互作技术我们的世界物种多种多样,而与我们人类生存关系最密切的就是植物。随着时间的推移与科技的进步,人类在逐步揭示自身基因真相的同时,也在不断探寻植物基因的种种功能。其中,蛋白质是植物生命活动的主要承担者。因此,在植物学相关研究中,蛋白质之间的相互作用是研究的重要基础和手段。目前,研究蛋白质-
BLT小课堂丨植物蛋白互作技术(二)
免疫共沉淀技术(CoIP):借助抗体和抗原之间的专一性,确定两种蛋白质在完整细胞内生理性的相互作用。当用预先固化在argarose beads上的蛋白质A的抗体免疫沉淀A蛋白,那么与A蛋白在体内结合的蛋白质B也能一起沉淀下来。再通过蛋白变性分离,对B蛋白进行检测,进而证明两者间的相互作用。优
成分输血小课堂(一)
输血是血液病的重要支持疗法,是多数血液病得以有效治疗的重要保障,在某些情况下,输血也是目前个别血液病的唯一有效治疗手段。随着血液分离技术的进展,输血已从传统观念的输全血逐渐发展为成分输血,输血的应用范围也从原来的单纯替代治疗发展为包括干细胞移植等重要的治疗技术。全血输血输血的传统观念是输全血,随着现
显微成像小课堂丨告别非焦平面信息干扰
虽然我们常说的分辨率指的焦平面上的分辨率(即XY方向),决定分辨率高下的决定因素是物镜的数值孔径,但是其实在宽场荧光显微镜中,样本中整个被照亮的区域都会发射出荧光,这些非焦平面上的荧光其实对于焦平面上发射出的荧光,也就是我们真正关注的信息来说就是一种干扰,这也可以理解为在Z方向上,也是有分辨率的
显微成像小课堂丨宽场荧光显微镜
在活体细胞成像应用中,宽场荧光显微镜有助于观察放置于显微镜载物台上特定的环境室中生长的粘附细胞的动力学特性。在最基本的配置中,配备有EPI荧光照明的标准倒置组织培养显微镜与区域阵列检测器系统(通常是CCD摄像机)、合适的荧光滤色片和光闸系统耦合,以限制细胞过度暴露于有害的激发光。基本荧光显微镜依
蛋白互作研究技术:「FRET」VS「Duolink-PLA」
荧光能量共振转移 (FRET)检测活体中生物大分子纳米级距离和纳米级距离变化的有力工具,广泛应用于生物大分子相互作用分析、细胞生理研究、免疫分析等。原理当供体荧光分子的发射光谱与受体荧光分子的吸收光谱重叠,并且两个分子的距离在 10nm 范围以内时,就会发生一种非放射性的能量转移,即 FRET 现象
小分子物质互作调控草坪草抗逆机理研究获进展
干旱、盐和冷害等环境胁迫因子单独或者共同作用制约着农作物的生产,是农业生产减产的重要因素。近年来,随着矿产资源的过度开采及农业中化肥的大量使用,土壤镉污染越来越严重,也成为影响我国持续农业和生态环境质量的一个重要因素。植物由于自身不能移动,在长期的自然进化中形成一系列复杂的调控机制,来感受外部胁
分子互作方法之BIAcore!
BIAcore是一种基于光学表面等离子共振(Surface Plasmon Resonance,简称SPR)原理的用于分子互作分析的常用方法。因为其准确性高、重复性好、应用广泛,目前SPR原理用于药物分析的方法已经被录入中国、美国、日本的药典,基于BIAcore方法的文献也已经超过了15000篇。那
分子互作仪选择宝典
在现代生物学、医学及转化医学、药物学等研究中,随着功能基因组研究的深入,生物大小分子的生物学功能研究占具着非常重要的地位;生物大小分子的相互作用分析成为目前分子功能学研究中不可缺少的重要手段,因此一个好的分子互作研究工具,无疑将对我们的科研起到极大的促进作用。目前研究分子互作的检测技术层出不穷,从传
成分输血小课堂(二)
7.辐照红细胞红细胞制品经过r 射线照射后称为辐照红细胞。常用的照射源是60Co或137Cs ,照射剂量为1500-3000cGy, 照射目的是灭活血制品中的免疫活性淋巴细胞。因为处于强烈联合化疗及放疗的病人处于继发性免疫缺陷状态,对输入的淋巴细胞无排斥能力,致使供体的淋巴细胞植活,引起输血
钟声教授团队开发高通量蛋白互作检测技术
通过深入了解基因组产物形成的相互作用网络,人类基因组注释功能得以飞速发展。随着技术的进步,我们已经实现了DNA-DNA、蛋白质 -DNA、RNA-DNA和RNA-RNA相互作用的全基因组映射图谱。但完成人类蛋白质-蛋白质相互作用(PPI)的全基因组映射图谱仍然是一项艰巨任务。 目前,大规模PP
Biacore分子互作技术加速抗体药研发和申报
【导语】抗体药研发涉及筛选、活性检测、表位作图、一致性评价、免疫原性和质量控制等环节——Biacore 作为药物活性检测平台,可以满足药物研发多个环节的需求,加快研发速度,其准确稳定的数据质量已经得到了药企和监管部门的广泛应用和认可。本文将利用抗体研发与质控中的几个重要环节来展示Biacore 分子
研究分子互作——Nicoya-SPR-技术的新应用案例
Nicoya SPR数据让您的文章更上一层楼!2016年,加拿大滑铁卢大学的Dr. Dieckmann和他的团队用核磁共振波谱法检测最低CaM浓度和逐渐增加的CaM浓度与NOS肽结合的构象,并结合SPR技术,发现当CaM浓度增加时,相互作用的强度也增强了,并导致了蛋白构象变化。SPR数据在确定相互作
看得见的蛋白互作新技术Duolink-PLA
现今,科技发展的齿轮正在高速运转,每隔2-3年就会出现一个重大的技术变革引领生命科学走向更精细、更微观、更真实的水平,这其中也包括蛋白的研究。在疾病的致病机理、分子机制、信号通路、药物筛选以及新型诊断标志物的发现中,传统的蛋白研究“金标准”方法如Co-IP、Western blot、ELISA、
谭洪:新一代BLI技术革新-推动分子互作更广应用
——Gator Bio创始人和CEO 谭洪博士专访 上世纪90年代,对分子结合性能的动态测量诞生了分子相互作用仪(简称:分子互作),并在生物制药和生命科学研究中使用越来越广泛。在分子互作的舞台上,生物膜干涉(BLI)技术是主力技术之一,它的发明人是留美博士谭洪。如今,他带领Gator Bio(小鳄
旋转蒸发器小课堂
导读:旋转蒸发器选购须知-你问我答 1、问:旋转蒸发器的工作原理是什么? 答:负压条件下,蒸发瓶在恒温水浴锅中旋转,溶液在瓶壁上形成薄膜,加大蒸发面积。低温下高效蒸发,冷凝回收、浓缩分离物料。 2、问:其核心技术是什么? 答:是系统的气密性,即在各种溶剂的侵蚀下,在运动状态下,系统能否保持高真空度。
单细胞分泌分析技术解析神经—免疫细胞互作网络
近日,我所单细胞分析研究组(1820组)陆瑶研究员团队利用单细胞多种类分泌因子检测技术,实现了对神经—免疫细胞互作网络的解析。 随着全球人口逐步进入老龄化阶段,神经退行性疾病正成为威胁人类健康的重大疾病之一。与神经退行性疾病直接相关的是神经细胞,但神经细胞并不是孤立存在的,神经细胞需要通过物理
行业金标准Biacore分子互作技术的发展与未来
从1996年Biacore正式进入中国,经过24年的时间,Biacore从一个小众的技术和产品成长为分子互作的“金标准”和基础科研及药物开发必备的工具。无论是一线高校还是基层科研单位,或是国内龙头生物制药企业,甚至是中检院、CDE和CDC这样的政府机构,都能看到Biacore的身影,它也伴随
布鲁克Ralf-Strasser博士:AI将重塑分子互作技术未来
——布鲁克分子互作事业部董事总经理兼副总裁Ralf Strasser博士采访2025年11月12日,布鲁克分子互作技术现场交流会在上海博雅酒店成功举办。在交流会结束后,分析测试百科网采访了布鲁克分子互作事业部董事总经理兼副总裁Ralf Strasser博士,探讨分子相互作用技术对生物制药和材料科学等
拉曼课堂小知识(一)拉曼光谱的原理
1.拉曼光谱的原理是什么?光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来
【锐赛小课堂】荧光原位杂交技术实验心得
锐赛小课堂1221-157 荧光原位杂交技术( fluorescence in situ Hybridization,FISH)是一种非放射性原位杂交方法,用特殊的荧光素标记核酸探针,在细胞或组织切片标本上进行杂交,以检测细胞内 DNA 或 RNA 特定序列存在与否。 FISH 实验
Cytiva发布Biacore-1-系列新一代分子互作系统
作为全球生命科学行业的先行者,Cytiva近日推出了功能更强大的Biacore 1 系列新产品,传承高灵敏、高基线稳定性的同时,开创了更多通道、更大通量、更多进样模式及更多功能模块,为用户提供更简便的实验方法,更快的检测速度,更优秀的数据质量,助力用户取得更好的科研成果,加速药物上市。Cytiva根
OpenSPR分子互作助力口服型肺炎纳米靶向药物研究(一)
目前,侵袭性真菌病的发病率迅速上升,对人类健康构成巨大挑战,尤其是在发展中国家。新型隐球菌引起百万例致死性隐球菌肺炎和或中枢神经系统隐球菌病,导致全世界700000人死亡,并且目前缺乏有效的治疗方法,因此迫切需要不断开发新的抗真菌药物及继续探索开发用于药物递送的有效方法或载体,从而提供增强的治疗功效
和泛素连接酶互作一定是被降解吗
不一定需要被讲解。E3酶与E2酶之间的互作是必要的,但不一定需要被讲解。事实上,这种互作已经得到广泛研究,并且已经有很多关于它的详细机制的文献发表。然而,在介绍泛素化过程时,对于E3酶与E2酶之间的互作进行简要的说明是有意义的,因为它能够帮助人们更好地理解泛素化的过程。和泛素连接酶(E3酶)与泛素激
通过TFEB激活吞噬溶酶体线粒体互作
巨噬细胞是我们先天免疫反应的关键细胞,这些细胞几乎遍布我们身体的所有组织,在维持我们器官的健康状态方面起着至关重要的作用。巨噬细胞特别擅长吸收、消化和破坏外来物质,它们会不断清除死亡细胞或入侵组织的微生物或病原体。然而,某些微生物和细菌,如沙门氏菌或分枝杆菌,已经发展出保护自己免受巨噬细胞消化的策略
怎么理解蛋白与核酸的互作
如果是相互作用的话。我的理解是,核酸是细胞内携带遗传信息的物质。在生物蛋白质的合成中占有重要的作用。这就是为什么我们吃了猪肉没有长成猪,而是合成了自己的蛋白质。
拉曼课堂小知识(二)—拉曼光谱技术的特征
2.拉曼散射光谱具有哪些特征?a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振
SCIEX学堂新课-|-QTRAP®小课堂
质谱进阶不用愁,短视频轻松看 “玩转质谱之QTRAP小课堂”,是“SCIEX 学堂”平台中一个专注于分享质谱知识,仪器操作、数据处理的实用技巧小课程。 一台仪器可实现两台质谱的功能,一个平台一次进样可同时进行定性和定量分析。MRM-IDA-EPI技术可同时获得与三重四极杆灵敏度相当水平的MRM数据
SCIEX学堂新课-|-QTRAP®小课堂
质谱进阶不用愁,短视频轻松看“玩转质谱之QTRAP小课堂”,是“SCIEX 学堂”平台中一个专注于分享质谱知识,仪器操作、数据处理的实用技巧小课程。 一台仪器可实现两台质谱的功能,一个平台一次进样可同时进行定性和定量分析。QTRAP 独特的MRM3 扫描功能可以降低背景,提高化合物检测的特异性;M
-遗传学大牛Nature发表新技术:单分子互作测序
George M. Church 随着技术的发现,大规模并行DNA测序得到了广泛的应用,为许多研究领域带来了一场革命。然而,高通量的蛋白质分析仍然困难重重,现在亟需高质量低成本的蛋白分析技术。 为此,遗传学界的大牛George M. Church领导哈佛医学院的团队,开发了一种单分子