用傅里叶变换红外光谱仪对酒制品检测分析
不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。向伶俐等人采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11 %,检验集准确率为90.87 %,提高判别的准确度,为葡萄酒原产地真伪识别提供了一种高效低成本的新方法。 此外,利用红外光谱对白酒年份与香型鉴别也有十分效。因不同香型白酒的成分有所差异,其红外光谱也不尽相同,可根据红外光谱差异鉴别不同年份的白酒。......阅读全文
用傅里叶变换红外光谱仪对酒制品检测分析
不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。向伶俐等人采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11 %,检验集准确率为90.87 %,提高判别的准确度,
傅里叶变换红外光谱仪对酒制品检测分析介绍
不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。向伶俐等人采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11 %,检验集准确率为90.87 %,提高判别的准确度,
傅里叶变换红外光谱仪对酒制品检测分析的使用
不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。科学家采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11%,检验集准确率为90.87%,提高判别的准确度,为葡萄酒
傅里叶变换红外光谱仪对乳制品的监测分析
通过红外光谱技术对乳制品定性定量分析,是实现乳制品快速检测的有效手段。利用傅立叶变换红外光谱法测定奶粉中三聚氰胺的含量,选取1551 cm-1附近特征吸收峰,建立线性定量模型。结果表明红外光谱法测定奶粉中三聚氰胺相关度高达0.9992,准确度高、稳定性好、检测限低,样品回收率为98.89%。该法
关于傅里叶变换红外光谱仪对谷类检测分析
近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300
傅里叶变换红外光谱仪对食用油检测分析
芝麻油中常常掺杂一些廉价的其他油品,严重损害了消费者的利益。利用中红外光谱技术,对纯芝麻油、掺入大豆油的芝麻油和掺入菜籽油的芝麻油进行分析,通过不同的预处理方法建立最优定性模型,应用最优模型进行预测,预测结果准确率达100%,准确区分了纯芝麻油和掺伪芝麻油。 油脂中反式脂肪酸含量严重影响人类健
傅里叶变换红外光谱仪对茶饮品检测分析
在茶叶品质分析中,红外光谱分析技术越来越得到大家的青睐。有研究员利用傅里叶变换红外光谱可准确鉴别三种半发酵乌龙茶品种单枞、铁观音和奇兰。结果表明,在1800~600 cm-1间光谱的峰型和峰强存在明显的差异,据此可以对三种茶叶的种类进行鉴别。还利用傅立叶变换红外光谱法,比较分析了云南普洱碧罗春茶
傅里叶变换红外光谱仪谷类检测分析
近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300
傅里叶变换红外光谱仪对果蔬和蜂蜜的检测分析
我国蜂蜜质量参差不齐,掺假现象也较为严重。孙燕等利用中红外图谱分析仪结合化学计量软件建立饶河黑蜂蜂蜜产地真假判别模型判别饶河本地的蜂蜜样品和其它地区蜂蜜样品,准确率达90.3 %,为蜂蜜真伪鉴别提供了一种有效的方法。 果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。朱春艳用
傅里叶变换红外光谱仪的果蔬检测分析
傅里叶变换红外光谱仪的果蔬检测分析:果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。用傅里叶红外光谱技术对敌百虫和辛硫磷两种农药的红外光谱进行了测量和分析,验证了FTIR/ATR技术快速检测蔬菜中有机磷农药残留的可行性,测定敌百虫的最低的检测限为0.2×10-6(体积分数),
傅里叶变换红外光谱仪简介
傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。[1]它克服了色散型光谱
傅里叶变换红外光谱仪概述
红外光谱法 (infrared spectroscopy,IR) 是鉴别化合物和进行物质分子结构研究的重要手段之一,同时也是物质组分定量分析的方法之一,是分子光谱法的一个重要分支。它是一种借助红外光被物质吸收情况,获得被测物质分子内部原子间相对振动和分子转动等信息,并根据所获得信息进行物质分子结构研
傅里叶变换红外光谱仪原理
一、产生红外吸收的条件根据量子力学,分子内部原子间的相对振动和分子本身转动所需的能量是量子化的,也就是说,从一个能态跃迁到另一个能态不是连续的,当照射于分子的光能 (E,E=hυ,h为普朗克常数,υ为光的频率) 刚好等于基态第一振动或转动能量的差值 (△E=E1- E0) 时,则分子便可吸收光能量,
傅里叶变换型近红外光谱仪器
傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;以传统的麦克尔逊干涉仪为代表的干涉仪,以及以
傅里叶变换型近红外光谱仪器
傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。 其基本组成包括五部分: 分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光; 以传统的麦克尔逊干涉仪为代表
傅里叶变换红外光谱仪干涉原理
傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经过干涉后照射到样品上然后到达检测器,傅立叶变换红外光谱仪测量部分的主要核心部件是干涉仪,图3是单束光照射迈克尔逊干涉仪时的工作原理图,干涉仪是由固定不动的反射镜M1(定镜),可移动的反射镜M2(动镜)及分光束器B组成,M1和M2是
傅里叶变换红外光谱仪结构组成
傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过
傅里叶变换红外光谱仪功能特点
赛默飞世尔科技(Thermo Scientific) Nicolet iS5型傅里叶变换红外光谱仪拥有优异的性能、外观和价值,适用于多领域的光谱分析工作。 功能全面,性能出色 1)适用各种附件:几乎可兼容所有红外附件(包括第三方附件)。2)适于各种样品:可测片剂/粉末/液体/气体等各种形态的样品。3
傅里叶变换红外光谱仪的优点
傅里叶变换光谱仪的主要优点是: ①多通道测量使信噪比提高; ②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度; ③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米; ④增加动镜移动距离就可使分辨本领提高; ⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现
傅里叶变换红外光谱仪的操作步骤
1. 开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在15~25℃、湿度 ≤ 60%才能开机; 2. 开机 首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性;
傅里叶变换红外光谱仪的基本结构
红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有
FTIR650傅里叶变换红外光谱仪
仪器简介: FTIR-650傅里叶变换红外光谱仪结合了光学、电子学、材料学及人工智能技术,所有细节无不体现设计的宗旨:操作简便,性能好、功能强大、智能操作、维护方便等特点,广泛地应用于医药、石油、化工、环保、食品、材料、国防、半导体、光学等领域,是实验室研究及常规应用分析的得力
关于傅里叶变换红外光谱仪的简介
傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。 [1]它克服了色散型光
傅里叶变换红外光谱仪的工作原理
傅里叶变换红外光谱仪的工作原理如下:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。红外分光光度计和傅里叶红外光谱仪之间的区别如下:一、原理不同1、红外分光光度计:由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被
傅里叶变换红外光谱仪的光学原理
傅立叶变换红外光谱仪的典型光路系统,来自红外光源的辐射,经过凹面反射镜使成平行光后进入迈克尔逊干涉仪,离开干涉仪的脉动光束投射到一摆动的反射镜B,使光束交替通过样品池或参比池,再经摆动反射镜C(与B同步),使光束聚焦到检测器上。 傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经
傅里叶变换红外光谱仪的工作原理
傅里叶变换红外光谱仪的工作原理如下:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。红外分光光度计和傅里叶红外光谱仪之间的区别如下:一、原理不同1、红外分光光度计:由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被
FTIR650傅里叶变换红外光谱仪
仪器简介:FTIR-650傅里叶变换红外光谱仪结合了光学、电子学、材料学及人工智能技术,所有细节无不体现设计的宗旨:操作简便,性能好、功能强大、智能操作、维护方便等特点,广泛地应用于医药、石油、化工、环保、食品、材料、国防、半导体、光学等领域,是实验室研究及常规应用分析的得力工具,是科研、生产不可或
傅里叶变换红外光谱仪的产品特点
傅里叶变换红外光谱仪的产品特点傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,
红外光谱分析仪在生活中具有什么用途?
红外光谱分析仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱分析仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃