薄膜材料能不能用AFM表征导电性能

可以测导电原子力C-AFM,电流图可以反映电导率......阅读全文

SEM-和AFM对比

SEM 和AFM 是两种类型的显微镜,它们最根本的区别在于它们操作的环境不同。SEM 需要真空环境中进行,而AFM 是在空气中或液体环境中操作。环境问题有时对解决具体样品显得尤为重要。首先,我们经常遇到的是像生物材料这一类含水试样的研究问题。这两种技术通过不同的方法互为补偿,SEM 需要环境室,而A

形象比喻AFM原理

测试这个级别的材料平整度,就会用到原子力显微镜,它的原理也很简单:就像咱们划船路过一遍暗礁,通常船手不会直接跳下去看看再量一量再拍个照,而是会用竹竿戳一戳,竹竿的长度是一定的,知道漏出水面的长度,也就知道水底暗礁的高度了。

多频AFM-技术

多频AFM 技术多频AFM(multifrequency AFM,MF-AFM)技术,简单来说就是微悬臂在多个频率下振动,并用来探测样品性质的一大类AFM技术,包括频带激励(band excitation)、双频追踪(dual resonance frequency tracking,DRFT)、边

qPlus-型AFM-技术

 qPlus 型AFM 技术qPlus 型AFM技术是使用石英音叉型力传感器代替传统的硅悬臂传感器,其中石英音叉的一个臂固定在基座上,而另一个自由悬臂和固定在其顶端的探针在压电陶瓷激励下以设定的恒定振幅振动,通过压电效应检测悬臂振动信号,具有恒频率偏移和恒针尖高度两种扫描成像模式。qPlus 型AF

AFM基本组成

AFM基本组成原子力显微镜是一种扫描探针显微镜,它是IBM公司Gerd Binning和斯坦福大学的Quate在1986年研发的,主要通过小探针与表面之间相互作用力的大小来获得表面信息。在一般的AFM系统中,主要由三部分组成:力传感部分、位置检测部分、反馈系统,其中力传感部分是AFM的核心部分,目前

AFM测半导体

半导体加工通常需要测量高纵横比结构,像沟槽和孔洞,确定刻蚀深度。然而如此信息用SEM 技术是无法直接得到的,除非将样品沿截面切开。AFM 技术则恰恰弥补了SEM 的这一不足,它只扫描试样的表面即可得到高度信息,且测量是无损的,半导体材料在测量后即可返回到生产线。AFM 不仅可以直观地看到光栅的形貌,

AFM的Contact-模式

Contact 模式a)点击实验方案选择图标 ,打开实验方案选择;b)选择实验具体模式,Contact Mode;c)选择实验环境,Air;d)进入实验界面;e)根据上面提到的步骤,调整激光,并将Head靠近样品表面以看清样品;f)点击“Check Parameters”图标,进入实验参数设置;g)

AFM力曲线测试

力曲线测试 AFM除了形貌测量之外,还能测量力对探针-样品间距离的关系曲线Zt(Zs)。它几乎包含了所有关于样品和针尖间相互作用的必要信息。这个技术可以用来测量探针尖和样品表面间的排斥力或长程吸引力,揭示定域的化学和机械性质,像粘附力和弹力,甚至吸附分子层的厚度。如果将探针用特定分子或基团修饰,利用

薄膜样品做XRD、SEM和原子力显微镜测试的先后顺序?

XRD、SEM和AFM测试没有固定的先后顺序。1 XRD(X-ray diffraction)是用来获得材料的成分、材料内部原子或分子的结构。2 SEM(扫描电子显微镜)是一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。3 AFM (原子力显微镜)是一种表面观测仪器,与扫描隧道显

原子力显微镜的针尖对薄膜样品表面是否有损伤

XRD、SEM和AFM测试没有固定的先后顺序。1 XRD(X-ray diffraction)是用来获得材料的成分、材料内部原子或分子的结构。2 SEM(扫描电子显微镜)是一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。3 AFM (原子力显微镜)是一种表面观测仪器,与扫描隧道显

原子力显微镜的由来

  原子力显微镜(atomic force microscope, AFM)是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器。1981年,STM(scanning tunneling microscopy, 扫描隧道显微镜)由IBM-Zurich 的Binnig and Rohrer 发明。1

研究讨论纤维素导电水凝胶的性能和传感相关性

  近日,陕西科技大学轻工科学与工程学院(柔性电子学院)张素风教授团队在多功能传感器设计及应用方面取得进展,系统综述了纤维素导电水凝胶的结构特征、材料构成和制备方法,相关研究成果发表在Advanced Fiber Materials上。  导电水凝胶因其可调的机械性能和稳定的导电性,成为柔性传感器开

原子力显微镜的针尖对薄膜样品表面是否有损伤

原子力显微镜的应用范围十分广泛,其适用于生物、高分子、陶瓷、金属材料、矿物、皮革等固体材料等的显微结构和纳米结构的观测,以及粉末、微球颗粒形状、尺寸及粒径分布的观测等。XRD、SEM和AFM测试没有固定的先后顺序。1 XRD(X-ray diffraction)是用来获得材料的成分、材料内部原子或分

Bruker公司成为英国石墨烯研究院官方指定合作伙伴

  近日,Bruker公司宣布与英国石墨烯研究院(NGI)成为正式合作伙伴。本次合作,NGI将新购置Dimension FastScan®、Dimension Icon®两台Bruker原子力显微镜(AFM)。这两套系统,加之实验室已有的五台Bruker AFM,将应用于有关石墨烯的研究工作。作为合

如何激光检测原子力显微镜/AFM/AFM探针工作

二极管激光器发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检

JPK-NanoWizard-4-BioScience生物型原子力显微镜

JPK NanoWizard 4 BioScience生物型原子力显微镜  产品技术特点——JPK公司的AFM产品,现在最新的型号为分别为:NanoWizard ®4 和NanoWizard ®  Ultraspeed。产品的技术特点归纳起来有以下几点:  1. 扫描器全部采用目前业界最好的平半闭环

导电型原子力显微镜的研制和应用研究

     扫描隧道显微镜只能测量导电的样品,原子力显微镜对样品是否导电没有特殊要求,但是无法测量样品导电性。在实际应用中,更多的研究对象是导电质与非导电质的混合物。特别是近年来人们感兴趣的金属有机复合材料、纳米颗粒镶嵌材料、纳米电子学等方面,都涉及到局域导电性及非导电性等问题。    鉴于STM和A

涡流导电率仪

  涡流检测的发展  879年:首次将涡流检测应用到实际(判断不同的金属和合金,进行材质分选)  1926年:第一台涡流测厚仪问世  20世纪40年代初:德国福斯特博士的理论研究推动了全世界涡流检测技术的发展。  中国:20世纪60年代开始:研制了涡流电导仪、测厚仪、检测设备。现有数字型的各种设备。

导电涂层的作用

导电涂层也称为预涂层,在锂电池行业内通常指涂覆于正极集流体——铝箔表面的一层导电涂层,涂覆导电涂层的铝箔称为预涂层铝箔或简称涂层铝箔。其最早在电池中的实验可以追溯到70年代,而近几年随着新能源行业,特别是磷酸铁锂电池的发展而风生水起,成为业内炙手可热的新技术或新材料。

植物果胶导电吗

植物果胶是导电的,他并不是绝缘物质。果胶是一种多糖,其组成有同质多糖和杂多糖两种类型。它们多存在于植物细胞壁和细胞内层,大量存在于柑橘、柠檬、柚子等果皮中。白色至黄色粉状,无味。在酸性溶液中较在碱性溶液中稳定,通常按其酯化度分为高酯果胶及低酯果胶。高酯果胶在可溶性糖含量≥60%、pH=2.6~3.4

AFM的-显微操作

 显微操作  通过在纳米级水平调控探针的位置和施加力,AFM可以实现对生物分子进行物理操作如切割生物结构,转移分子至特定位置。在一定的范围调整施加力,AFM在成像的同时即可对样品进行操作。施加力的范围主要由悬臂的力学常数和探针粗细决定。与标准显维切割技术相比,AFM对目标区域切割、提取等操作具有更准

AFM成像对样品影响

苯甲酸钠(C6H5COONa),分子量:144.11,分析纯,天津市福晨化学试剂厂生产。Balb/c系小鼠购自中山医科大学实验动物中心;RPMI-1640、胎牛血清(Fetalbovineserum,FBS)及β-巯基乙醇等细胞培养试剂购自GibcoBRL公司。1.2淋巴细胞的准备       将B

AFM的位置检测部分

位置检测部分在原子力显微镜/AFM的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。

AFMRaman-联用技术

 什么是近场光学?物体表面的场分布可以划分为两个区域,距离物体表面仅仅几个K的区域称为近场,近场光学则是研究距离物体表面一个波长范围的光学现象;从近场区域外至无穷远称为远场区域,通常观察工具如显微镜等各种光学镜头均处于远场范围。近场光学显微镜突破常规光学显微镜受到的衍射极限,在超高光谱分辨率下进行纳

AFM的测试机巧

下针:在选好模式下针前,务必找到样品表面,调好焦距。扫描范围先设置为0,当针尖接触到样品表面后,再扩大扫描范围,保护下针时破坏针尖。扫图:为了得到好的图象,须调好trace和retrace,一般来说调电压效果会好一些。探针在多次使用后或样品表面比较粗糙,扫描范围太小时,trace和retrace重合

AFM纳米碳管探针

纳米碳管探针    由于探针针尖的尖锐程度决定影像的分辨率,愈细的针尖相对可得到更高的分辨率,因此具有纳米尺寸碳管探针,是目前探针材料明日之星。纳米碳管(carbon nanotube)是由许多五碳环及六碳环所构成的空心圆柱体,因为纳米碳管具有优异的电性、弹性与轫度, 很适合作为原子力显微镜的探针针

AFM制-样-要-求

制 样 要 求1)样品可导电,可不导电,可以很平也可以不那么平,(对表面光洁度有一定要求)。2)适用于多种环境,可在真空,空气和溶液中进行。

AFM偏振光、干涉

偏振光、干涉光是一种电磁波,而电磁波是一种横波,只有横波才有偏振现象。其定义为电矢量相对于传播方向以一固定方式震动的光,图1-4为偏振光示意图。光的偏振现象可以借助于实验装置进行检测。取两块相同的偏振片A、B,将自然光先通过第一块偏振片A,此时自然光也变成为偏振光,但因为人眼无法辨别所以就需要第二块