减数分裂时大约20%的断裂对应于紧密定位的双链断裂对
减数分裂是一种特殊的细胞分裂过程,需要产生配子,即生物体的生殖细胞。在减数分裂过程中,父系和母系染色体复制、配对并交换部分DNA,这一过程称为减数分裂重组。为了调节这种遗传物质的交换,细胞将双链断裂(dsb)引入染色体DNA。来自维也纳大学和医学维也纳大学的Max Prutz实验室的染色体生物学系的Franz Klein实验室的科学家们现在发现,细胞有时会在配对的或双倍的DSBs位点释放DNA片段。虽然由于错误的修复或断裂位点其他地方片段的整合,这呈现出种系突变的明显风险,但它也可能是进化多样性的一个来源。这项研究发表在《自然》杂志的一篇研究文章中,人类的遗传信息编码在23对染色体上,其中一对由两个稍有不同的拷贝或同源物组成。一个继承自父亲,一个继承自母亲。然而,人类的配子是单倍体的,一开始只有一半的染色体。当配子在有性生殖过程中融合时,它们创造出一个拥有全套染色体的有机体。在减数分裂早期,亲本染色体的随机分类以及同源染色体......阅读全文
研究更新哺乳动物表观遗传信息编程规律
近日,中科院北京基因组所研究员刘江团队与南京大学教授黄行许团队合作,揭示了哺乳动物中子代如何继承亲代DNA甲基化图谱的规律,更新了关于受精之后DNA甲基化图谱重新编程的传统认识。相关论文日前发表于《细胞》杂志。 哺乳动物受精后由一个受精卵发育成一个完整的个体,DNA甲基化则是指导受精卵发育成早
关于姐妹染色单体的单体关系介绍
一般来说,染色单体应包括姐妹染色单体,但二者并非等同关系。从有丝分裂前期到中期(在有丝分裂后期,着丝点断裂,此时不存在染色单体),染色体沿其长轴发生纵裂。这样被分成的二条染色体各称为染色单体。开始成为一对的染色单体两者并不分开,逐渐它们具有独立的基质,并在其中各自形成二条染色丝。而且染色单体往往
姊妹染色单体的单体关系介绍
一般来说,染色单体应包括姐妹染色单体,但二者并非等同关系。从有丝分裂前期到中期(在有丝分裂后期,着丝点断裂,此时不存在染色单体),染色体沿其长轴发生纵裂。这样被分成的二条染色体各称为染色单体。开始成为一对的染色单体两者并不分开,逐渐它们具有独立的基质,并在其中各自形成二条染色丝。而且染色单体往往
性细胞有一套染色体-身体细胞有两个
在有性生殖中,后代来自专门的性细胞的结合-雌性卵和雄性精子。在孟德尔的工作重新发现之前,对性细胞形成过程中的染色体行为进行了仔细研究(减数分裂)。首先,同源(类似)染色体在细胞赤道配对,它们实际上在交换遗传信息。然后,将每一对中的一条染色体拉向每个极点。在这种还原分裂结束时,每个子细胞仅从每对中接收
DNA重组的染色体交换的介绍
真核生物中染色体交换促进了减数分裂过程中的DNA重组。交换过程导致后代具有与其亲本不同的基因组合,并且偶尔可以产生新的嵌合等位基因。由DNA重组引起的基因改组增加了遗传变异。 染色体交叉涉及从父母遗传的配对染色体之间的重组,通常在减数分裂过程中发生。在前期I(粗线期)期间,四种染色单体彼此紧密
水泵断裂位置及端面状况分析
根据流体力学原理,当泵运行时,有压力水在管路系统中以一定的速度运动,当速度方向和大小发生变化时,对管路系统将产生动反力,产生动反力的主要管路是出水管转弯处,止回阀出口管即出水管转弯处。 根据理论力学和材料力学原理,水泵由管路系统所受各力通过管路传递到支点上,但支点承受的力将不尽相等,与泵连接的管
断裂重生:记忆是如何形成的
当形成长期记忆时,一些脑细胞会经历强烈的电活动,以至于使其DNA断裂。3月27日,一项发表于《自然》的小鼠研究表明,炎症反应开始起作用,修复这种损伤并帮助巩固记忆。没有参与这项工作的美国麻省理工学院神经生物学家蔡立慧说,这一发现“非常令人兴奋”,支持了形成记忆是“危险的事”的观点。通常,双螺旋DNA
冷冻断裂蚀刻复型技术简介
冷冻断裂蚀刻复型技术是复型技术种类,先将生物样品在液氮中(-196℃)进行快速冷冻,防止形成冰晶。然后将冷冻的样品迅速转移到冷冻装置中,并迅速抽成真空。在真空条件下,用冰刀横切冷冻样品,使样品内层被分开露出两个表面。如用冰刀切开细胞膜时,分开的两个面分别称为P面(protoplasmic face)
简述肩袖断裂的治疗措施
1、非手术治疗肩袖断裂,对新鲜部份断裂者,大多不需手术,可用肩人字石膏或外展架将关节固定在外展、前屈、外旋位4-8周,拆石膏后配合理疗和功能练习,必要时可用强的松龙加1%普鲁卡因注射液封闭。但有人认为制动对老年病人易导致冻结肩,主张在疼痛许可情况下即开始主动功能练习。如经4-6周严格非手术疗法仍
传动轴断裂、脱落的原因
传动轴发生断裂、脱落的故障虽不多见,但一旦发生将导致事故。传动轴断裂、脱落的原因如下:1、传动轴总成不平衡:传动轴变形、传动轴平衡贴片掉落、轴承盖平衡垫片不对称等,都将使传动轴总成的旋转质量中心偏离其旋转轴线,产生较大的离心力。在离心力长期作用下,会使传动轴产生疲劳裂纹,以致断裂。同时,传动轴失去
DNA重组的概念和作用
DNA重组(DNA recombination)实质上指的是遗传重组(genetic recombination),也称为遗传改组(genetic reshuffling),是指两个不同姐妹染色体间遗传物质的交换。DNA重组导致后代产生不同于任一亲本的新性状。真核生物减数分裂期间的DNA重组产生新的
植物减数分裂过程中染色体精准分离调控获揭示
近日,华南农业大学教授王应祥团队在国家自然科学基金等项目的资助下,研究揭示了模式植物拟南芥泛素连接酶后期促进复合物/细胞周期体(APC/C)调控减数分裂染色体正确分离的分子机制。该研究丰富了蛋白质泛素化修饰调控减数分裂染色体分离的分子机制和作用网络。相关成果发表于《植物细胞》(The Plant
MSH4基因的结构特点和生理作用
这个基因编码一个dna错配修复muts家族的成员。该成员是一种减数分裂特异性蛋白质,不参与DNA错配纠正,但在减数分裂I时需要互惠重组和同源染色体的适当分离。该蛋白和msh5形成一个异二聚体,该异二聚体与Holliday连接点及其发育前体特异结合,从而激发adp-atp交换,稳定了减数分裂双链断裂修
关于DNA重组的基本信息介绍
DNA重组(DNA recombination)实质上指的是遗传重组(genetic recombination),也称为遗传改组(genetic reshuffling),是指两个不同姐妹染色体间遗传物质的交换。DNA重组导致后代产生不同于任一亲本的新性状。真核生物减数分裂期间的DNA重组产生
人类染色体的主要类型
人类染色体可分为两种类型:常染色体(体染色体)和性染色体(异体染色体)。某些遗传特征与一个人的性别有关,并通过性染色体传播。常染色体因此包含其余部分的遗传信息。常染色体和性染色体的复制、有丝分裂和减数分裂过程一致。
人类染色体常规类型
人类染色体可分为两种类型:常染色体(体染色体)和性染色体(异体染色体)。某些遗传特征与一个人的性别有关,并通过性染色体传播。常染色体因此包含其余部分的遗传信息。常染色体和性染色体的复制、有丝分裂和减数分裂过程一致。
Nat-Genet:癌症病人遗传信息暗藏最佳治疗选择
由桑格研究所领导的一支国际合作团队最近证明了一种可以在未来帮助癌症患者真正实现个体化治疗的新概念。这些发现能够用于为急性髓系白血病(AML)患者找到最佳的治疗选择。相关研究结果发表在国际学术期刊Nature Genetics上。 AML是一种由骨髓细胞形成的侵袭性血液癌症。该研究团队曾经报道有
颠覆性发现:中心粒也携带遗传信息?
瑞士洛桑联邦理工学院(EPFL)的研究团队发现,中心粒可以携带信息在细胞中跨世代传递。这一惊人的发现说明,除基因之外线粒体也可能携带遗传信息。 中心粒是细胞内由多个蛋白组成的桶状结构,受到了科学家们的广泛研究。中心粒蛋白发生突变会引起一系列疾病,包括发育异常、呼吸疾病、男性不育和癌症。EPFL
遗传信息的一般性传递方式介绍
中心法则是一个框架,用于理解遗传信息在生物大分子之间传递的顺序,对于生物体中三类主要生物大分子:DNA、RNA和蛋白质,有9种可能的传递顺序。法则将这些顺序分为三类,3个一般性的传递(通常发生在大多数细胞中),3个特殊传递(会发生,但只在一些特定条件下发生),3个未知传递(可能不会发生)。法则中3类
为何是DNA而不是RNA作为遗传信息的载体?
一项新的研究可能解释了为何DNA而不是它古老的表亲---RNA---是遗传信息的主要储藏室。DNA双螺旋是容错性较大的分子,能够自我扭曲成不同的形状来消减遗传密码的基础构造元件---碱基A、G、C和T----所遭受的化学损伤。与此相反的是,当RNA以双螺旋形式存在时,它是非常刚硬和不易弯曲的,不
MUS81基因的结构特点和主要作用
该基因编码一种结构特异性核酸内切酶,属于xpf/mus81核酸内切酶家族,在dna链间交联、复制叉折叠和dna双链断裂后修复过程中对重组中间产物的分解起着关键作用。编码的蛋白质与两个密切相关的必需的减数分裂内切酶蛋白(eme1或eme2)中的一个结合,形成一个处理dna二级结构的复合物。它包含一个N
植物花粉母细胞减数分裂制片实验
实验方法原理减数分裂是生物在性母细胞成熟形成配子过程中发生的一种特殊有丝分裂,它包括连续两次的细胞分裂,第一次分裂是减数的,第二次是等数的。第一次分裂的前期较长,染色体变化较复杂,可细分为5个时期,即细线期、偶线期、粗线期、双线期和终变期。染色体在减数分裂的行为对遗传物质的分配和重组产生重大影响。高
关于花粉母细胞的减数分裂介绍
在花粉囊壁发育的同时,花粉囊内的造孢细胞也进行分裂。大多数植物的初生造孢细胞要进行几次分裂,然后形成花粉母细胞。如商陆(图商陆1)初期常为多边形,稍后渐近圆形,体积较大,细胞核也较大,细胞质浓,没有明显液泡,与其四周的花药壁层细胞有明显的区别。极少数植物的造孢细胞可不再分裂,直接发育为花粉母细胞
植物花粉母细胞减数分裂制片实验
实验方法原理:减数分裂是生物在性母细胞成熟形成配子过程中发生的一种特殊有丝分裂,它包括连续两次的细胞分裂,第一次分裂是减数的,第二次是等数的。第一次分裂的前期较长,染色体变化较复杂,可细分为5个时期,即细线期、偶线期、粗线期、双线期和终变期。染色体在减数分裂的行为对遗传物质的分配和重组产生重大影响。
关于细胞增殖的减数分裂的介绍
是一种特殊方式有丝分裂,它与有性生殖细胞的形成有关。它是进行有性生殖的生物,在原始的生殖细胞(如动物的精原细胞或卵原细胞)发展为成熟的生殖细胞(精子或卵细胞)的过程中,要经过减数分裂。在整个减数分裂过程中,染色体只复制一次,而细胞连续分裂两次。减数分裂的结果是,新产生的生殖细胞中的染色体数目,比
细胞有丝分裂与减数分裂的区别
1)有丝分裂是体细胞的分裂方式,而减数分裂仅存在于生殖细胞。2)有丝分裂是DNA复制一次,细胞分裂一次,染色体数由2n~2n。减数分裂是DNA复制一次,细胞分裂两次,染色体数由2n~n。3)有丝分裂之前,在S期进行DNA的合成,然后经过G2期进入有丝分裂期,减数分裂前DNA合成时间较长,特称为减数分
植物花粉母细胞减数分裂制片实验
实验方法原理 减数分裂是生物在性母细胞成熟形成配子过程中发生的一种特殊有丝分裂,它包括连续两次的细胞分裂,第一次分裂是减数的,第二次是等数的。第一次分裂的前期较长,染色体变化较复杂,可细分为5个时期,即细线期、偶线期、粗线期、双线期和终变期。染色体在减数分裂的行为对遗传物质的分配和重组产生重大影响。
上海交大张大兵新发Plant-Cell文章
在植物中,F-box蛋白构成了一个大的超家族,对于控制许多生物学过程起着重要的作用,但是F-box蛋白在植物减数分裂中的作用仍不明确。7月19日,来自上海交通大学生科院的研究人员在国际著名植物学杂志《Plant Cell》发表题为“MEIOTIC F-BOX Is Essential for M
研究揭示胚胎期生殖细胞H3K9me2的重建参与雌性减数分裂前期进程
在哺乳动物发育过程中,成熟单倍体配子的形成起始于原始生殖细胞(PGCs)的谱系发育。以小鼠为模型的研究表明,PGCs从胚胎期形成,历经迁移至生殖嵴直至完成性别分化的整个过程中,始终维持着高度动态的表观遗传重编程状态。这一特征性现象主要表现为全基因组范围的DNA去甲基化、H3K9me2组蛋白修饰的显著
同源染色体在减数分裂中的功能
减数分裂(Meiosis)进行两次细胞分裂,产生四个单倍体子细胞,每个子细胞含有亲体细胞的一半染色体。它首先通过分离减数分裂I期中的同源染色体,再通过分离减数分裂II期中的姐妹染色单体,将生殖细胞中的染色体数量减少一半 。减数分裂I期的过程通常比减数分裂II期长,因为染色质复制需要更多的时间,并且同