磁共振波谱分析仪的工作原理
磁共振用于临床的根本原因是磁共振产生的长波成分可以穿透人体组织,在正常组织中,代谢物以特定的浓度存在,当组织发生病变时,代谢物浓度也会发生改变,磁共振通过测量这些变化量来确定物质结构。 磁共振波谱仪利用体内含奇数质子的原子核自身的磁性及外加磁场的作用使其发生共振,发出磁共振信号,经傅里叶公式转换成波谱为临床提供诊断依据。磁共振波谱主要检测的是组织内一些化合物和代谢物的含量以及它们的浓度。由于各组织中的原子核与质子是以一定的化合物的形式存在,在一定化学环境下,这些化合物或代谢物具有一定的化学位移,并在磁共振波谱中的峰值发生微小变化,它们的峰值和化学浓度的微小变化经磁共振扫描仪采集,使其转化为数值波谱。这些化学信息代表组织或体液中相应代谢物的浓度,反映组织细胞的代谢状况。......阅读全文
磁共振波谱分析仪的工作原理
磁共振用于临床的根本原因是磁共振产生的长波成分可以穿透人体组织,在正常组织中,代谢物以特定的浓度存在,当组织发生病变时,代谢物浓度也会发生改变,磁共振通过测量这些变化量来确定物质结构。 磁共振波谱仪利用体内含奇数质子的原子核自身的磁性及外加磁场的作用使其发生共振,发出磁共振信号,经傅里叶公式转
核磁共振波谱法简介和其工作原理
核磁共振(nuclear magnetic resonance ; NMR )现象是1946 年由美国斯坦福大学的F . Bloch 等人和哈佛大学的E . M . Purcell等人各自独立发现的,Bloch 和Purcell 因此获得了1952 年诺贝尔物理学奖。40 多年来,核磁共振不仅形成为
核磁共振波谱仪工作原理及常见问题介绍
核磁共振波谱仪,是指研究原子核对射频辐射的吸收,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时也可进行定量分析。其工作原理是在强磁场中,原子核发生能级分裂,当吸收外来电磁辐射时,将发生核能级的跃迁,即产生所谓NMR现象。核磁共振波谱仪常见问题解答,希望能对你有所帮助:1.共振
磁共振波谱分析仪概述
磁共振波谱分析仪是一种利用磁共振中的化学位移来测定分子组成及空间构型的检测仪器。 磁共振波谱分析仪是指研究原子核对射频辐射的吸收,对各种无机、有机物的成分、结构等进行定性分析的医疗设备,有时也可进行定量分析。它利用医学影像技术测定人体内化学代谢物,也是检测体内化学成分的无创性检查手段。 磁共
核磁共振波谱法的原理
核磁共振波谱分析法(NMR)是分析分子内各官能团如何连接的确切结构的强有力的工具。磁场中所处的不同能量状态(磁能级)。原子核由质子、中子组成,它们也具有自旋现象。描述核自旋运动特性的是核自旋量子数I。不同的核在一个外加的高场强的静磁场(现代NMR仪器由充电的螺旋超导体产生)中将分裂成2I+1个核自旋
核磁共振波谱法的原理
核磁共振波谱分析法(NMR)是分析分子内各官能团如何连接的确切结构的强有力的工具。磁场中所处的不同能量状态(磁能级)。原子核由质子、中子组成,它们也具有自旋现象。描述核自旋运动特性的是核自旋量子数I。不同的核在一个外加的高场强的静磁场(现代NMR仪器由充电的螺旋超导体产生)中将分裂成2I+1个核自旋
磁共振波谱分析仪系统简述
射频系统 1) 射频发生器由发射器、功率放大器和发射线圈组成。射频脉冲是诱发磁共振现象的主导因素,发射的脉冲频率与主磁体产生的静磁场正交,发射的脉冲频率也需与静磁场强度相匹配。 2) 接受部分由接收线圈和低噪声信号放大器组成。探测器接收的信号传送预放大器,增加信号强度,可降低后处理过程中的
电子顺磁共振波谱原理简介
电子顺磁共振波谱仪(EPR)是检测物质中未成对电子及其与周围环境相互作用的分析方法,具有高灵敏度、高分辨率的特点,而且测量过程中不干扰反应进程、不破坏样品结构,特别重要的是EPR测量适用于各种不同形态的样品,包括非均相溶液、悬浊液和生物样品等。EPR波谱的基础是未成对电子在磁场中对微波能量的吸收。由
电子顺磁共振波谱原理简介
电子顺磁共振波谱仪(EPR)是检测物质中未成对电子及其与周围环境相互作用的分析方法,具有高灵敏度、高分辨率的特点,而且测量过程中不干扰反应进程、不破坏样品结构,特别重要的是EPR测量适用于各种不同形态的样品,包括非均相溶液、悬浊液和生物样品等。EPR波谱的基础是未成对电子在磁场中对微波能量的吸收。由
磁共振波谱分析仪的临床应用
1. 磁共振波谱对判断梗死区脑细胞功能的恢复有监测作用,有利于判断病变的预后。 2. 判断脑肿瘤的放射治疗、化学治疗及手术治疗后的疗效、是否有肿瘤残留或复发。区分急、慢性期以及对脱髓鞘疾病治疗的疗效做出判断。 3. 用3P磁共振波谱来检测肝肿瘤放射后所致的肝放射性损伤的程度以及肝能量代谢的状
核磁共振波谱的基本原理
基本原理就是外加磁场和原子自身的磁场二者频率一致时就会产生共振,放出一个信号。主要获得化合物的结构信息。
电子顺磁共振波谱仪的原理
物质组成的基本单位是分子,分子是由原子构成,原子是由原子核和电子组成。在多数情况下,电子在分子(或原子)轨道中是配对的,由于它们处于同一轨道中,且自旋方向相反,所以,这类化合物是逆磁性物质。但是,有许多化合物的分子轨道或原子轨道中存在着未配对的电子。这类含未成对电子的物质就是EPR研究的对象。
核磁共振波谱仪原理及应用扩展
核磁共振波谱仪是基于核磁矩不等于零的原子核,在静磁场作用下,对稳定频率电磁波的吸收现象来研究物质结构的一种工具。分析工作者从共振峰的数和相对的强度、化学位移和驰豫时间等参数进行物质结构分析。由于核磁共振技术具有深入物质内部,而不破坏样品的特点,并随着核磁共振理论及波谱仪 器的迅速发展,核磁共振波谱仪
电子顺磁共振EPR-波谱技术的原理
电子顺磁共振EPR波谱 的基本概念,物质的顺磁性是由分子的永久磁矩产生的。根据保里原理:每个分子轨道上不能存在 2 个自旋态相同的电子,因而各个轨道上已成对的电子自旋运动产生的磁矩是相互抵消的,只有存在未成对电子的物质才具有永久磁矩,它在外磁场中呈现顺磁性。电子自旋产生自旋磁矩: μ = ge β,
核磁共振波谱仪核磁共振谱仪基本原理
1) 原子核的基本属性a.原子核的质量和所带电荷 ——是原子核的最基本属性。b.原子核的自旋和自旋角动量 ——量子力学中用自旋量子数I描述原子核的运动状态。原子核的自旋运动具有一定的自旋角动量;其自旋角动量也是量子化的,它与自旋量子数 I 间的关系为:各种核的自旋量子数质量数A原子序数Z自旋量子数I
台式核磁共振波谱成像的原理及应用
台式核磁共振波谱成像(MRI)也称磁共振成像,是利用核磁共振原理,通过外加梯度磁场检测所发射出的电磁波,据此来绘制成物体内部的结构图像。将台式核磁共振成像技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具,现在台式核磁共振成像技术已在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用。
核磁共振波谱法的原理和应用特点
核磁共振波谱法(英语:Nuclear Magnetic Resonance spectroscopy,简称 NMR spectroscopy 或 NMRS ),又称核磁共振波谱,是将核磁共振现象应用于测定分子结构的一种谱学技术。核磁共振波谱的研究主要集中在氢谱和碳谱两类原子核的波谱。人们可以从核磁共
关于核磁共振波谱仪的基本原理
核磁共振波谱仪主要由5个部分组成。 ①磁铁:它的作用是提供一个稳定的高强度磁场,即H0。 ②扫描发生器:在一对磁极上绕制的一组磁场扫描线圈,用以产生一个附加的可变磁场,叠加在固定磁场上,使有效磁场强度可变,以实现磁场强度扫描。 ③射频振荡器:它提供一束固定频率的电磁辐射,用以照射样品。
核磁共振波谱法的基本原理
根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定:1)中子数和质子数均为偶数的原子核,自旋量子数为0;2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2);3)中子数为奇数,质
电子顺磁共振波谱仪原理解析
电子顺磁共振波谱仪EPR 的基本概念是物质的顺磁性是由分子的永久磁矩产生的。根据保里原理:每个分子轨道上不能存在 2 个自旋态相同的电子,因而各个轨道上已成对的电子自旋运动产生的磁矩是相互抵消的,只有存在未成对电子的物质才具有永久磁矩,它在外磁场中呈现顺磁性。电子自旋产生自旋磁矩: μ = geβ,
电子顺磁共振波谱仪原理解析
电子顺磁共振波谱仪EPR 的基本概念是物质的顺磁性是由分子的永久磁矩产生的。根据保里原理:每个分子轨道上不能存在 2 个自旋态相同的电子,因而各个轨道上已成对的电子自旋运动产生的磁矩是相互抵消的,只有存在未成对电子的物质才具有永久磁矩,它在外磁场中呈现顺磁性。电子自旋产生自旋磁矩: μ = geβ,
磁共振波谱技术的发展
磁共振波谱(NMR),一种用来研究物质的分子结构及物理特性的光谱学方法,与紫外吸收光谱、红外光谱和质谱并称有机波谱的四大谱。核磁共振波谱与紫外、红外吸收光谱一样都是微观粒子吸收电磁波后在不同能级上的跃迁。紫外和红外吸收光谱是分子分别吸收波长为200~400nm和2.5~25μm的辐射后,分别引起分子
核磁共振波谱方法
一种现代仪器分析法。在外加磁场B中,自旋量子数为I的核自旋可以有2I+1个不同的取向。例如1H,13C,19F,31P(I均为1/2),则有2个不同的取向。这是由于带正电荷的核自旋所产生的磁场,可以有与外磁场B相同的取向(具有位能E1),也可能相反(位能E2),在常态下,当E2>E1时,处于E1
磁共振波谱仪部分
主要包括射频发射部分和一套磁共振信号的接收系统。发射部分相当于一部无线电发射机,它是波形和频谱精密可调的单边带发射装置,其峰值发射功率有数百瓦至十五千瓦可调。接收系统用来接收人体反映出来的自由感应衰减信号。由于这种信号极微弱,故要求接收系统的总增益很高,噪声必须很低。一般波谱仪都采用超外差式接收
核磁共振颗粒表面特性分析仪的工作原理
核磁共振颗粒表面特性分析仪可用于测量乳液或泡沫液滴的大小和分布情况,其测量范围广(10nm~100μm),相比于传统的粒度测定技术如激光衍射需要大量稀释乳液才能测量液滴的大小,不需要任何的稀释。尤其对于量高浓度,高粘度,不透明,光敏乳剂,以及一些特殊纳米或或微乳液(由于其特殊组成不能稀释),Ac
核磁共振波谱法简介和工作方式
核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)是材料表征中*有用的一种仪器测试方法,它与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,广泛应用于物理学、化学、生物、药学、医学、农业、环境、矿业、材料学等学科,是对各种有机和无机物的成分、结构进行定性分析的*
核磁共振波谱法的固体核磁波谱
液体核磁样品如果放在某些特定的物理环境下,是无法进行研究的,而其它原子级别的光谱技术对此也无能为力。但在固体中,像晶体,微晶粉末,胶质这样的,偶极耦合和化学位移的磁各向异性将在核自旋系统占据主导,在这种情况下如果使用传统的液态核磁技术,谱图上的峰将大大增宽,不利于研究。已经有一系列的高分辨率固体核磁
关于核磁共振波谱NMR的知识(原理、用途、分析、问题)
核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,亦可进行定量分析。原理在强磁场中,某些元素的原子核和电子能量本身所具有的磁性,被分裂成两个或两个
关于核磁共振波谱NMR的知识(原理、用途、分析、问题)
核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,亦可进行定量分析。 [点击图片可在新窗口打开] 原理 在强磁场
核磁共振波谱法基本原理(一)
(一)原子核的磁性质原子核是带正电的粒子,实验证明大多数原子核在做自旋运动,因而具有一定的自旋角动量,用P表示,角动量是一个矢量,其方向服从右手螺旋定则。核由自旋产生的角动量不是任意数值,而是由自旋量子数决定的。根据量子力学理论,原子核的总角动量P的值为式中,h为普朗克常量;h为角动量的单位,h=h