大脑和心脏起搏器的关键调控因子
目前,生物学家发现,T型钙通道的一个胞外域turret区,可改变心脏和脑细胞的电化学信号。了解这些区域如何发挥作用,将有助于研究人员最终开发出治疗癫痫、心血管疾病和癌症的一类新药。 这项研究来自于滑铁卢大学,发表在2014年4月25日的《Journal of Biological Chemistry》杂志,因其重要意义被评选为“Papers of the Week”。 研究人员发现,椎实螺(Lymnaea stagnalis)的T型钙通道,由于具有一个氨基酸胞外域,称为“位于通道入口上方的turret区”,因此能够从使用钙离子转为使用钠离子来产生电信号。 低电压T型通道,可通过一个门口样通道使带正电荷的阳离子有选择性地通过细胞膜,每隔一段时间就产生微小的电流脉冲。通道一般极具选择性,只允许每10,000个钙离......阅读全文
大脑和心脏起搏器的关键调控因子
目前,生物学家发现,T型钙通道的一个胞外域turret区,可改变心脏和脑细胞的电化学信号。了解这些区域如何发挥作用,将有助于研究人员最终开发出治疗癫痫、心血管疾病和癌症的一类新药。 这项研究来自于滑铁卢大学,发表在2014年4月25日的《Journal of Biological Chem
JBC:大脑和心脏起搏器的关键调控因子
目前,生物学家发现,T型钙通道的一个胞外域turret区,可改变心脏和脑细胞的电化学信号。了解这些区域如何发挥作用,将有助于研究人员最终开发出治疗癫痫、心血管疾病和癌症的一类新药。 这项研究来自于滑铁卢大学,发表在2014年4月25日的《Journal of Biological Ch
Cell揭示心脏形成的新调控因子
通过研究胚胎干细胞调节DNA包装的机制发现了一个心脏形成的新调控因子。科学家们说发现这种发现遗传调控因子的方法或许有能力提供关于身体内所有组织如肝、脑、血液等等形成的深入了解。 干细胞有潜力成为所有的细胞类型。一旦做出选择,这种细胞和其他的干细胞坚持一样的命运划分形成器官组织。 一个
心脏起搏器的原理
脉冲发生器定时发放一定频率的脉冲电流,通过导线和电极传输到电极所接触的心肌(心房或心室),使局部心肌细胞受到外来电刺激而产生兴奋,并通过细胞间的缝隙连接或闰盘连接向周围心肌传导,导致整个心房或心室兴奋并进而产生收缩活动。需要强调的是,心肌必须具备有兴奋、传导和收缩功能,心脏起搏方能发挥其作用。
心脏起搏器的简介
心脏起搏器是一种植入于体内的电子治疗仪器,通过脉冲发生器发放由电池提供能量的电脉冲,通过导线电极的传导,刺激电极所接触的心肌,使心脏激动和收缩,从而达到治疗由于某些心律失常所致的心脏功能障碍的目的。1958年第一台心脏起搏器植入人体以来,起搏器制造技术和工艺快速发展,功能日趋完善。在应用起搏器成
心脏起搏器的系统组成
人工心脏起搏系统主要包括两部分:脉冲发生器和电极导线。常将脉冲发生器单独称为起搏器。起搏系统除了上述起搏功能外,尚具有将心脏自身心电活动回传至脉冲发生器的感知功能。 起搏器主要由电源(亦即电池,现在主要使用锂-碘电池)和电子线路过程,能产生和输出电脉冲。 电极导线是外有绝缘层包裹的导电金属线
心脏起搏器的系统组成
人工心脏起搏系统主要包括两部分:脉冲发生器和电极导线。常将脉冲发生器单独称为起搏器。起搏系统除了上述起搏功能外,尚具有将心脏自身心电活动回传至脉冲发生器的感知功能。 起搏器主要由电源(亦即电池,现在主要使用锂-碘电池)和电子线路过程,能产生和输出电脉冲。 电极导线是外有绝缘层包裹的导电金属线
心脏起搏器的原理简介
脉冲发生器定时发放一定频率的脉冲电流,通过导线和电极传输到电极所接触的心肌(心房或心室),使局部心肌细胞受到外来电刺激而产生兴奋,并通过细胞间的缝隙连接或闰盘连接向周围心肌传导,导致整个心房或心室兴奋并进而产生收缩活动。需要强调的是,心肌必须具备有兴奋、传导和收缩功能,心脏起搏方能发挥其作用。
Nature:T细胞功能调控的关键转录因子
T细胞是适应性免疫系统的主要组成部分, 它们在病菌感染中被功能活化, 参与宿主防御, 但是遇到自身抗原或者在慢性感染和肿瘤微环境中, 它们会发生命运改变, 进入功能失能命运, 但是调控T细胞功能失能的分子机制会不清楚。 来自清华大学医学院,陆军军医大学全军临床病理学研究所的研究人员发表了题为“
Nature:研究发现调控血管形成的关键因子
血管生成是在原有血管网基础上,通过内皮细胞芽出而形成新生血管的复杂过程,这一复杂构成涉及几个分子信号通路。 近日,RIKEN BioResource中心Yoichi Gondo与一队来自加拿大的研究人员合作,发现了一种新的调节血管生成的分子,并确定其调控机制。 研究小组发现Gum
心脏起搏器的常见故障
常见故障及处理 通常表现为无刺激信号、不能夺获或不能感知。 (1)无刺激脉冲 可能有下列常见原因之一: 1)如放置磁铁后可解决问题,则其原因多半是过感知或使用了正常的一些起搏功能如滞后。前者多由于电磁干扰、肌电位、交叉感知或T波过感知等引起,应降低感知灵敏度,而后者无需处理。
肺癌细胞中异常剪接的关键调控因子
Pre-mRNA可变剪接是一种增加基因组多样性和调控基因表达的重要机制。在肿瘤的发生发展过程中,许多剪接事件发生异常变化。然而,我们并不清楚这些异常剪接事件是如何产生的,异常剪接产物对肿瘤细胞的生物学功能产生什么影响。肺癌是最常见的恶性肿瘤之一,在全球范围是癌症相关致死的头号杀手。由于缺乏有效的
肿瘤细胞调控关键因子和新机制被我国科研团队发现
近日,军事医学科学院国家生物医学分析中心主任张学敏科研团队,发现了肿瘤细胞周期调控的关键因子和新机制,为肿瘤靶向治疗研究提供了新的靶标分子。此项研究报告已被国际著名学术期刊《自然细胞生物学》杂志在线发表。 癌症作为一类恶性肿瘤,由人体内正常细胞演变而来。大量实验与临床研究发现,
我国科研人员发现肿瘤细胞调控关键因子和新机制
近日,军事医学科学院再传好消息,该院国家生物医学分析中心主任张学敏科研团队在肿瘤生长和调控研究中取得重要突破,发现了肿瘤细胞周期调控的关键因子和新机制,为肿瘤靶向治疗研究提供了新的靶标分子。 此项研究工作已被国际著名学术期刊《自然细胞生物学》(Nature Cell Biology,影响因子1
心脏起搏器治疗应用要点总结
20世纪中期,心脏外科的快速发展促生了应用人工方式刺激心肌的需求。最初的心肌刺激装置是大型的外部设备,技术的发展使得电子线路开始微型化,最终这些大型的外部装置演变成了完全可植入装置。目前,该领域的技术仍在不断进步,例如近年来的无线起搏器。 PART 1 心脏起搏器 在本综述的第一部分中,作
研究揭示蛋白β羟基丁酰化修饰关键调控因子
近日,中国科学院上海药物研究所研究员黄河课题组与美国芝加哥大学教授赵英明团队合作,通过全面分析哺乳动物细胞中的Kbhb底物,系统揭示了新型蛋白动态修饰β-羟基丁酰化(Kbhb)的关键调控因子。相关研究成果于2月25日在线发表在Science Advance上。 细胞代谢为生命过程提供能量,同时
科学家发现可以调控生育能力的关键因子
随着越来越多的夫妇因为生育问题寻求帮助,科学家们希望找出可以提高生育能力的因素。在《 PNAS》杂志上发表的一项研究中,由大阪大学的研究人员领导的团队描述了一项激动人心的突破,它可能有助于未来的生育疗法。 归根结底,精子只有一项工作:使卵子受精。然而,要做到这一点,他们必须首先进入输卵管,这需
心脏起搏器Ⅱa类适应证包括哪些?
1)窦房结功能不全者①窦房结功能障碍导致心率3秒者,要考虑植入永久性心脏起搏器。 心动过速的起搏治疗仅限于导管消融和(或)药物治疗失败,或不能耐受药物副作用且反复发作的室上速患者。 高危的长QT综合征患者。 以下心衰患者可植入CRT或CRT–ICD:①左室射血分数≤35%,完全性左束支传导
最新研究揭示蛋白β羟基丁酰化修饰关键调控因子
近日,中国科学院上海药物研究所研究员黄河课题组与美国芝加哥大学教授赵英明团队合作,通过全面分析哺乳动物细胞中的Kbhb底物,系统揭示了新型蛋白动态修饰β-羟基丁酰化(Kbhb)的关键调控因子。相关研究成果在线发表在Science Advance上。 细胞代谢为生命过程提供能量,同时代谢物可通过
Nature-|-介导X染色体失活关键调控因子
X染色体失活(X-chromosome inactivation)现象指的是在雌性哺乳动物中有一条X染色体被随机沉默,是在1961年由Mary Lyon发现的【1】,因此该现象又被称为里昂化(Lyonization)。X染色体失活现象发现到现在约60年的时间里,关于该现象的研究已有数千篇,但其中
山中伸弥最新Cell子刊:调控iPS过程的关键因子
来自京都大学诱导多能干细胞研究与应用中心,美国Gladstone心血管疾病研究所等处的研究人员发表了题为“The let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by
心脏起搏器的选择有哪些注意事项
对具体患者选择何种起搏器是临床医师经常需面临的问题。原则如下: 1.如存在慢性持续心房颤动或存在心房静止者 选择VVI(R)。 2.窦房结功能不全者 如无房室传导阻滞或预测近期房室传导阻滞发生概率很低,选择AAI(R),否则选择DDD(R)。 3.房室传导阻滞者 如①存在持续性房性快
黄冈首例无导线心脏起搏器成功植入
近日,黄冈地区首例Micra无导线心脏起搏器植入术在大别山区域医疗中心顺利完成,标志着黄冈市中心医院率先引领黄冈地区进入起搏器植入“无线时代”,该技术将为大别山地区“慢心率”患者带来福音。患者67岁的龙某因头晕乏力、胸闷气短等不适症状,在家人的陪同下来到大别山区域医疗中心心血管内科就医。入院完善相关
“心系列”开启国产心脏起搏器新征程
3月26日,上海胸科医院,一台“心系列”双腔起搏器被植入一名病窦综合征病人。整个手术仅耗时 45分钟,患者术后身体恢复良好,第三天便出院回家。 除了上海,湖北、广东、山东、陕西、浙江等国内多家医院,都首次采用了“心系列”起搏器,治疗心动过缓的病人,帮助患者恢复正常生活。 而这款“心系列”起
-Sci-TM:基因疗法有望替代心脏起搏器
基因疗法将在不久之后作为心脏病的治疗方法迈入电子起搏装置的行列,通过在心肌组织细胞中插入一个特殊的基因,研究者便可以恢复正常的心率跳动,至少是暂时的恢复,并且已经将其试验于猪,获得初步成功。 电子起搏器能够恢复心脏有规律的跳动,而本身这一功能是由成千上万的心脏细胞构成的窦房结来完成的。尽管心脏
Nature子刊颠覆原有理论:补上大脑如何调控食欲关键拼图
贝斯以色列女执事医疗中心(BIDMC)的研究人员发现了一种前所未知的神经环路,这种神经环路在促进饱腹感方面发挥了重要作用。研究人员指出这一发现颠覆了目前关于大脑维持机体现有摄食行为状态的模型,为了解饥饿和饱腹调控提供了新的信息,也有助于研发针对肥胖流行病的解决办法。 这一研究成果在线公布在11
《自然》“合成胚胎”诱导发育出了大脑和跳动的心脏
英国剑桥大学Magdalena Zernicka-Goetz领导的团队在实验室中用小鼠干细胞合成了胚胎,且“合成胚胎”诱导发育出了大脑和跳动的心脏。相关研究结果近日发表于《自然》。 Zernicka-Goetz表示,这是目前最接近子宫中自然发育的胚胎结构。其团队在用同样的方法进行人造人类胚胎实
科研人员培育出生物心脏起搏器-或取代电子起搏器
科研人员16日说,他们给猪的心脏注射一种基因,成功培育出可以治疗心律异常的“生物起搏器”。如果证实在人体中也有效果的话,这种“生物起搏器”也许有一天能够取代电子心脏起搏器,给一个已达数十亿美元规模的产业带来冲击。 这一成果发表在美国《科学-转化医学》杂志上。研究负责人、美国锡达斯-赛奈心脏研究
上海生科院发现肺癌细胞中异常剪接的关键调控因子
4月10日,国际学术期刊PLOS Genetics 在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所惠静毅课题组题为The RNA-binding protein QKI suppresses cancer-associated aberrant splicing 的研究
关键蛋白调节大脑发育
正常的大脑发育需要神经元和非神经元(也称为神经胶质)细胞之间的相互作用。筑波大学的研究人员在一项新研究中揭示了蛋白质精氨酸甲基转移酶(PRMT)1的丧失如何导致神经胶质细胞破裂并影响大脑的正常发育。 PRMT修饰其他蛋白质的特定氨基酸,从而调节细胞的关键功能,例如存活,增殖和发育。在迄今为止已确定的