揭示人类海马体精细亚区处理工作记忆的神经动力学机制

工作记忆是一种对信息进行暂时加工和贮存的容量有限的记忆系统,作为知觉、长时记忆和动作之间的接口,是思维过程的基础支撑结构。海马体则被认为是执行工作记忆认知功能的重要脑区,人类电生理研究一致发现,海马体单个神经元在工作记忆加工中持续放电。然而,海马体由不同的精细亚区组成,是一个复杂的异质结构,各精细亚区如何参与并协同完成工作记忆认知活动仍然未知。 近日,中国科学院自动化研究所脑网络组研究中心联合瑞士苏黎世大学医院结合脑网络组图谱和颅内脑电信号高时空分辨率的特点,揭示了人类海马体前后亚区执行工作记忆的神经振荡特征及相互作用的动力学过程,证明了海马体前后亚区通过3-12Hz频段的同步振荡活动以后海马向前海马的信息传递支持工作记忆加工。 研究者招募了14名在海马体植入深部电极的难治性癫痫患者完成经典的工作记忆认知任务(这些患者因抗癫痫药物治疗无效,需要接受手术治疗。术前临床医生会在患者脑内植入多根深部电极采集场电位信号以精确评估......阅读全文

单个神经祖细胞促进海马体中的神经发生

  科学家们曾经认为,哺乳动物在进入成年期时,拥有它们所拥有的所有神经元,但是上世纪60年代的研究发现,成年大脑的某些部位会产生新的神经元,而上世纪90年代的开创性研究帮助确定了它们的起源和功能。如今,在一项新的研究中,来自美国宾夕法尼亚大学的研究人员在小鼠身上发现单个神经祖细胞(neural pr

人类海马体精细亚区处理工作记忆的神经动力学机制

  工作记忆是一种对信息进行暂时加工和贮存的容量有限的记忆系统,作为知觉、长时记忆和动作之间的接口,是思维过程的基础支撑结构。海马体则被认为是执行工作记忆认知功能的重要脑区,人类电生理研究一致发现,海马体单个神经元在工作记忆加工中持续放电。然而,海马体由不同的精细亚区组成,是一个复杂的异质结构,各精

人类海马体精细亚区处理工作记忆的神经动力学机制

工作记忆是一种对信息进行暂时加工和贮存的容量有限的记忆系统,作为知觉、长时记忆和动作之间的接口,是思维过程的基础支撑结构。海马体则被认为是执行工作记忆认知功能的重要脑区,人类电生理研究一致发现,海马体单个神经元在工作记忆加工中持续放电。然而,海马体由不同的精细亚区组成,是一个复杂的异质结构,各精细亚

揭示人类海马体精细亚区处理工作记忆的神经动力学机制

  工作记忆是一种对信息进行暂时加工和贮存的容量有限的记忆系统,作为知觉、长时记忆和动作之间的接口,是思维过程的基础支撑结构。海马体则被认为是执行工作记忆认知功能的重要脑区,人类电生理研究一致发现,海马体单个神经元在工作记忆加工中持续放电。然而,海马体由不同的精细亚区组成,是一个复杂的异质结构,各精

科学家发现:海马体中新神经元的来源

  曾经有人认为,哺乳动物出生时会有一生所有的神经元供应。 然而,在过去的几十年中,神经科学家已经发现,大脑至少有两个区域——嗅觉中心和海马体——在整个生命中能生长出新的神经元。近期发表在Cell上的一篇研究不仅证实了这一观点,而且对大脑海马体中新神经元的来源进行了探究。(DOI:https://d

MIT研究长期记忆神经回路,海马体和新皮层记忆同时产生

  当我们拜访一个朋友或去海滩时,大脑会在一个叫做海马体的部分存储短期的记忆。一段名为海马脑部的经验的短暂记忆。这些记忆之后会被“巩固”——即转移到大脑的另一部分进行长期存储。  一项最新的针对基于这一过程的神经回路的MIT 研究首次揭示出,记忆是在海马体和大脑皮层中的长期储存区同时形成的。然而,在

促进海马体中神经元的生成或能缓解阿尔茨海默症

  日前,《自然·医学》发表的一项研究表明,维持或促进海马体中神经元的生成或有助于治疗阿尔茨海默症。  海马体负责存储和检索记忆,是受阿尔茨海默症影响最严重的大脑区域之一,曾有研究称,成年人海马体区域始终会生成新的神经元。基于此,研究者对一些健康成年人(43岁—87岁)死后的脑组织进行研究,结果显示

海马神经元细胞的分离及培养

实验概要从海马体中分离到神经元细胞,然后进行培养细胞以便进行其他的实验研究。主要试剂解剖液MEMHBSS主要设备L-多聚赖氨酸包被的平皿或盖玻片实验材料出生24h内的乳鼠实验步骤1. 用冷却的解剖液(0℃,最高2-3℃)冲洗海马两次。2. 在冷却解剖液(2-3℃)中解剖无脑膜的海马。3. 加入胰蛋白

皮层/海马神经元的原代培养

实验方法原理 神经元在发育过程中早于胶质细胞,因此通常选择胎鼠做脑内神经元培养。一般取El7-l8d孕大鼠或El4-16d孕小鼠做神经元培养。新生1d的仔鼠也可以用来培养神经元,但培养成功后杂细胞较多,有时需要进一步纯化。这两个部位的细胞培养方法类似实验材料 El7-18d孕大鼠或E14-16d孕小

皮层/海马神经元的原代培养实验

实验方法原理神经元在发育过程中早于胶质细胞,因此通常选择胎鼠做脑内神经元培养。一般取El7-l8d孕大鼠或El4-16d孕小鼠做神经元培养。新生1d的仔鼠也可以用来培养神经元,但培养成功后杂细胞较多,有时需要进一步纯化。这两个部位的细胞培养方法类似实验材料El7-18d孕大鼠或E14-16d孕小鼠新

小鼠海马神经元细胞的注意事项!

   小鼠海马神经元细胞的注意事项!   一、背景及概述   海马椎体神经元是海马区的主要成分,主要功能是参与近期记忆、情绪及内脏功能调节、是老年性痴呆、癫痫等疾病的主要病灶之一。小鼠海马神经元细胞培养是研究神经细胞生物学特性和外源干扰因素作用(细胞因子)的有效细胞模型,其在神经生物

小鼠海马神经元细胞的注意事项!

  一、背景及概述   海马椎体神经元是海马区的主要成分,主要功能是参与近期记忆、情绪及内脏功能调节、是老年性痴呆、癫痫等疾病的主要病灶之一。小鼠海马神经元细胞培养是研究神经细胞生物学特性和外源干扰因素作用(细胞因子)的有效细胞模型,其在神经生物学,发育生物学体外实验研究中已被广泛应用。

皮层/海马神经元的原代培养实验

基本方案             实验方法原理 神经元在发育过程中早于胶质细胞,因此通常选择胎鼠做脑内神经元培养。一般取El7-l8d孕大鼠或El4-16d孕小鼠做神经元培养。新生1

科学家解释大脑海马体变化机制

  从通过数数解决基本的算术问题到利用记忆来高效解决问题的这个阶段中,大脑中与记忆有关的区域——海马体活动的增加会标记出一些变化,这是发表在《自然—神经科学》上一项研究给出的结论。  Shaozheng Qin等人使用功能性磁脑成像技术追踪了儿童、青少年、青年成人在解决数学问题时,其大脑的海马体和前

研究发现:海马体前部和后部存在显著差异

  美国德州大学西南分校的研究人员对大脑海马的基因活动进行了研究,发现海马体前部和后部存在显著差异。这一发现发表在今天的《Neuron》杂志上,它可能有助于揭示涉及海马的各种大脑疾病,并可能最终帮助我们找到新的、有针对性的治疗方法。  “这些新的数据揭示了分子水平的差异,使我们能够以一种全新的方式观

神经所研究发现海马神经元树突发育调控新机制

  7月4日,《神经科学杂志》(Journal of Neuroscience)发表了中科院上海生命科学研究院神经所王以政研究组题为“经典型瞬时电压受体通道5通过a亚型钙调蛋白激酶2介导神经营养因子3对大鼠海马神经元树突生长的调控作用”的研究论文。该论文报道了神经营养因子3 (Neurotr

夹尾体感刺激抑制大鼠海马CA1区锥体神经元的兴奋性

  大脑海马区负责实现学习和记忆,但是它对于外界感觉输入信息的处理机制尚不清楚。中国浙江大学封洲燕博士所在团队利用微电极阵列在大鼠海马区监测神经元的活动,发现夹尾的感觉刺激会诱发不同种类神经元产生不同的响应。其中,锥体神经元放电减少,而抑制性中间神经元放电却会增加。而且,在锥体神经元输入通道上直接施

中药山茱萸活性成分能够保护海马神经元

透射电镜(×4000)下见10 μmol/L的5-羟甲基糠醛预处理后H2O2损伤大鼠海马神经元内部分线粒体肿胀,形态多正常。   研究发现炮制过的山茱萸抗衰老作用明显,尤其是抗脑部衰老,其活性成分5-羟甲基糠醛对H2O2损伤的大鼠海马神经元具有一定保护作用,可以提高损伤细胞中超氧化物歧化酶的活力,

大鼠海马神经细胞钠通道电流的记录实验

实验方法原理钠通道在多种细胞尤其是在神经、肌肉等可兴奋细胞中广泛存在。钠电流(ⅠNa)是快反应细胞上最重要的除极离子流,与细胞的兴奋性密切相关。钠通道在膜电位-70~-65 mV开始激活,产生一迅速激活并迅速失活的内向电流,最大电流峰值在膜电位-40 ~-30 mV,反转电位为+30 mV左右。在参

大鼠海马神经细胞钠通道电流的记录实验

实验方法原理 钠通道在多种细胞尤其是在神经、肌肉等可兴奋细胞中广泛存在。钠电流(ⅠNa)是快反应细胞上最重要的除极离子流,与细胞的兴奋性密切相关。钠通道在膜电位-70~-65 mV开始激活,产生一迅速激活并迅速失活的内向电流,最大电流峰值在膜电位-40 ~-30 mV,反转电位为+30 mV

小鼠海马神经元细胞分离培养的步骤详解

  小鼠神经元细胞中神经元是构成神经系统结构和功能的基本单位。细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。   (1)75%(体积分数)酒精消毒新生24h内的健康C57小鼠,在无菌条件下脱颈处死,剪开头皮及颅骨,取出脑组织,置于盛冷的pH7.2,无钙、镁的D-Hank'

小鼠原代海马神经元细胞的分离培养方法

原代小知识——小鼠原代海马神经元细胞的分离培养方法海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞

浅谈大鼠海马神经元细胞的分离培养方法

大鼠海马神经元细胞分离自海马体,海马体,又名海马回、海马区、大脑海马,海马体主要负责记忆和学习。海马神经元细胞是海马区的主要细胞组成,主要功能是参与近期记忆、情绪及内脏功能调节、是老年性痴呆、癫痫等疾病的主要病灶之一。    海马属于大脑的边缘系统,在学习、记忆、情绪反应及神经系统疾病的病理生理变化

Science:海马体之外还有形成记忆的新系统

  直到现在,海马体仍然被认为是与形成和唤醒记忆有关的最重要脑部区域,其他区域只起到次要作用。但是发表在国际学术期刊Science上的一项新研究发现脑部的内嗅皮质区域在其中发挥着新的独立作用。奥地利科学技术研究所的科学家们发现大鼠的内嗅皮质能够进行运动记忆的重放不需要经过海马体。  当空间记忆形成,

生物物理所等绘制人类海马体发育细胞图谱

  1月16日,《自然》(Nature)在线发表了题为Decoding the development of the human hippocampus 的研究论文。该工作系统阐明了人海马体胚胎发育过程中的基因表达调控网络和细胞命运决定因子,绘制了高精度发育细胞图谱,解析了海马发育过程中的不同细胞类

ClC3氯通道参与下的海马神经元凋亡

  一氧化氮供体3-吗啡斯德酮亚胺诱导的凋亡神经元细胞膜上ClC-3表达增强   目前认为一氧化氮过量产生和膜内外离子平衡紊乱等参与了缺血性脑损伤后神经元的凋亡。中国遵义医学院珠海校区生理学教研室的常全忠教授领导的团队,为探讨 ClC-3氯通道在缺血性脑损伤神经元凋亡中的作用,建立了一氧化氮供

Toll样受体4介导的海马神经元凋亡

免疫荧光分析显示,脂多糖+Toll样受体4抗体培养海马神经元,海马神经元损伤数量比单独以脂多糖培养海马神经元减少,说明Toll样受体4抗体可以抑制脂多糖诱导的海马神经元凋亡   中国南通大学医学院何悦硕士所在团队的一项关于“Toll-like receptor 4-mediated signali

激活P300蛋白修复海马神经元DNA损伤延缓神经退行性变

  在治疗神经退行性疾病的方法中,一些副作用较小的治疗方法已成为研究者们的选题热点。Dragoş Cîrneci领导罗马尼亚Synergon顾问公司(Synergon Consulting)脑研究所提出认知任务可通过激活在碱基切除修复途径中起关键作用的p300蛋白,修复海马神经元DNA损伤来

海马的介绍

  海马(拉丁学名:Hippocampus),所属刺鱼目海龙科。  海马身长5-30厘米;头部弯曲与体近直角,头呈马头状而与身体形成一个角,吻呈长管状,口小;背鳍一个,均为鳍条组成。其喜栖于藻丛或海韭菜繁生的潮下带海区,性甚懒惰,主要摄食小型甲壳动物。其主要分布于大西洋、欧洲、太平洋、澳大利亚。  

海马的概述

  海马(拉丁学名:Hippocampus),所属刺鱼目海龙科。  海马身长5-30厘米;头部弯曲与体近直角,头呈马头状而与身体形成一个角,吻呈长管状,口小;背鳍一个,均为鳍条组成。其喜栖于藻丛或海韭菜繁生的潮下带海区,性甚懒惰,主要摄食小型甲壳动物。其主要分布于大西洋、欧洲、太平洋、澳大利亚。