间接火焰原子吸收法测定样本铝含量的结果分析

计算式中:m——从校准曲线上查得样品中铝的微克数(μg);V——取样的体积(ml)。精密度和准确度六个实验对含Al 0.5 mg/L的统一样品进行分析,结果为0.50 mg/L,室内相对标准偏差为4.95%;室间相对标准偏差为4.95%。......阅读全文

间接火焰原子吸收法测定样本铝含量的结果分析

计算式中:m——从校准曲线上查得样品中铝的微克数(μg);V——取样的体积(ml)。精密度和准确度六个实验对含Al 0.5 mg/L的统一样品进行分析,结果为0.50 mg/L,室内相对标准偏差为4.95%;室间相对标准偏差为4.95%。

间接火焰原子吸收法测定样本铝含量的测定范围

方法的适用范围本方法的最低检出浓度为0.1 mg/L,测定范围为0.1~0.8 mg/L。可用地表水、地下水、饮用水及污染较轻的废水中铝的测定。

间接火焰原子吸收法测定样本铝含量的试剂选择

试剂①铝标准贮备液:准确称取预先磨细并在硅胶干燥器中放置3 d以上的 KAI(SO4)2·12H2O(AR)1.759 g,用0.5%H2SO4溶液溶解,并定容至100 ml,此溶液含铝1.000 mg/ml。②铝标准使用液:临用前,用0.05%H2SO4溶液将铝标准贮备液逐级稀释,使成为含铝10

间接火焰原子吸收法测定样本铝含量的操作步骤

操作步骤(1)样品的预处理取水样100 ml于250 ml烧杯中,加入HNO3 5 ml,置于电热板上消解,待溶液约剩10 ml时,加入2%硼酸溶液5 ml,继续消解,蒸至近干。取下稍冷,加入5%抗坏血酸10 ml,转至100 ml容量瓶中,用水定容。(2)试液的制备准确转移试样0.5~30ml(使

间接火焰原子吸收法测定样本铝含量的干扰因素介绍

K+、Na+(各10 mg),Ca2+、Mg2+、Fe2+(各200 μg),Cr3+(125 μg),Zn2+、Mn2+、Mo6+(各50 μg),PO43-、Cl-、NO3-、SO42-(各1 mg)不干扰20 μgAl的测定。Cr6+超过125 μg稍有干扰,Cu2+、Ni2+干扰严重,但在加

间接火焰原子吸收法测定样本铝含量的注意事项

①配制铝标准溶液前,应先将KAI(SO4)2·12H2O在玛瑙研钵中研碎,平铺于培养皿中,在硅胶干燥器中放置3 d,以除去湿存水,再进行称量。②需挑选刻线和塞之间空间较大的比色管,以便于萃取。③如水样铝含量低,在消解水样时,可将样品适当浓缩。④消解到最后时,应当将酸尽量赶掉,否则在下一步调酸度时会因

间接火焰原子吸收法测定样本铝含量的仪器及工作条件

仪器及工作条件①原子吸收分光光度计;②铜空心阴极灯;③工作条件:按仪器使用说明书调节仪器至测定Cu的最佳工作状态。波长:324.7 nm,火焰种类:空气-乙炔,贫燃焰。

间接火焰原子吸收法测定样品铝含量的方法原理

在pH4.0~5.0的乙酸-乙酸钠缓冲介质中及在PAN存在的条件下,Al3+与Cu(Ⅱ)-EDTA发生定量交换,反应式如下: Cu(II)-EDTA + PAN+Al3+   →   Cu(II)-PAN + Al3+(III)-EDTA生成物Cu(Ⅱ)-PAN可被氯仿萃取,用空气-乙炔火焰测定水相

火焰原子吸收法测定铁含量的结果分析

计算式中:m——校准曲线查得铁、锰量(μg);V——水样体积(ml)。精密度和准确度用1%盐酸配制含铁2.00 mg/L、锰1.04 mg/L的统一样品,经13个实验室分析,铁、锰室内相对标准偏差为0.86%和0.85%;室间相对标准偏差为2.64%和1.88%;相对误差为+0.18%和-12.5%

火焰原子吸收光度法测定样本镍含量的结果计算

计算式中:m——从校准曲线上查得镍量(μg);V——水样体积(ml)。精密度和准确度12个实验室分析含镍1.017 mg/L的合成水样,测得总平均值1.012 mg/L,室内相对标准偏差1.76%;室间相对标准偏差1.76%;相对误差0.45%。本方法还用于矿山、冶炼、电镀、机械行业41种废水样品的

火焰原子吸收法测定样本锑含量的干扰因素

试液中存在的一般阴、阳离子不干扰锑的测定,试液中存在低于20%盐酸或硝酸也无影响,只有硫酸浓度大于2%,对锑的吸收信号有抑制作用。在波长217.6 nm测量锑,大量铜和铅有光谱干扰,使吸收信号增加。为此,可选择较小的光谱通带予以克服。铜的浓度小于20 mg/L,铅的浓度小于10 0mg/L没有干扰。

火焰原子吸收法测定样本锑含量的方法原理

锑的化合物在微富燃的空气-乙炔火焰中原子化具有较好的灵敏度,用火焰中锑的基态原子,对其空心阴极灯发射的特征谱线217.6 nm的吸收进行定量。

火焰原子吸收法测定钠钾含量的结果计算

计算式中:f ——稀释比,f=定容量(ml)/水样量(ml);C——校准曲线查得的钾、钠浓度(mg/L)。精密度和准确度人工合成水样含K+ 9.82 mg/L,Na+ 46.55 mg/L,Ca2+ 40.64 mg/L,Mg2+ 8.39 mg/L,Cl- 88.29 mg/L,SO42- 293

火焰原子吸收法测定样本锑含量的方法的试剂选择

试剂①锑标准贮备液:准确称取光谱纯三氧化二锑0.2995 g溶于50 ml盐酸,定量移入250 ml容量瓶,加水至标线,摇匀。此溶液每毫升含1.00 mg锑。②锑标准使用液:准确移取锑标准贮备液10.00 ml置于100 ml容量瓶,加水至标线,摇匀。此溶液每毫升含100.0 μg锑。

火焰原子吸收法测定样本锑含量的方法的操作步骤

操作步骤(1)校准曲线①于6支25 ml容量瓶中,准确加入锑标准使用液0、1.00、2.00、4.00、6.00、8.00 ml,加入(1+1)盐酸2 ml,加水至标线,摇匀。②按仪器使用说明书选好最佳参数,顺次喷入试液,测量吸光度。绘制吸光度-锑含量曲线。(2)样品测定①准确移取适量水样(含锑5~

火焰原子吸收光度法测定样本镍含量的操作步骤

操作步骤(1)校准曲线绘制分别吸取镍标准使用液0、1.00、2.00、4.00、6.00、8.00 ml置于10 ml容量瓶中,用1%硝酸溶液定容。按所选择的仪器工作参数调好仪器,测量每份溶液的吸光度,绘制吸光度-浓度曲线。(2)样品测定视试样镍含量,直接喷雾或使用经1%硝酸溶液适当稀释后的样品溶液

火焰原子吸收光度法测定样本镍含量的方法原理

将试液喷入空气-乙炔贫燃火焰中,在高温下,镍化合物解离成基态原子,其原子蒸气对锐线光源(镍空心阴极灯)发射的特征谱线232.0 nm产生选择性吸收。在一定条件下吸光度与试液中镍的浓度成正比,即可定量。

火焰原子吸收光度法测定样本镍含量的干扰因素

测定5 μg/ml镍时,下列离子均无明显干扰:硫酸根5000 μg/ml;钙(Ⅱ)、镁(Ⅱ)、铜(Ⅱ)、铬(Ⅲ)、锰(Ⅱ)、铁(Ⅲ)、镉(Ⅱ)、钾(I)、硅酸根、氟离子各1000 μg/ml;铅(Ⅱ)、锌Ⅱ)、磷酸根各500 μg/ml;银(I)、锡(Ⅱ)、锑(III)各100 μg/ml。使用23

火焰原子吸收法测定样本锑含量的方法的适用范围

本方法的最低检测浓度为0.2 mg/L,测定上限为4 0mg/L。本方法可适用于有色冶金、化工、制药、含锑矿开采的工业废水的测定。

火焰原子吸收法测定样本锑含量的方法的注意事项

对于含盐浓度较高的废水样需用标准加入法检查有无基体干扰,用背景校正器检查有无背景吸收。若有基体干扰,要采用标准加入法定量;若有背景吸收,则应用背景校正器扣除。

火焰原子吸收法测定样本锑含量的方法的计算公式

计算式中:m——从校准曲线上查得的锑含量(μg);V——分取水样的体积(ml)。

火焰原子吸收光度法测定样本镍含量的注意事项

①当样品无机盐含量高时,采用自吸收法或塞曼效应扣除背景。无此条件时,也可采用邻近吸收线法扣除背景吸收,在测量浓度许可时,也可采用稀释方法减少背景吸收。②硫酸浓度较高易产生分子吸收,以采用硝酸或盐酸介质为好。

火焰原子吸收法测定铁含量的方法

原子吸收法和等离子发射光谱法操作简单、快速,结果的精密度、准确度好,适用于环境水样和废水样中铁的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法以避兔高倍数稀释操作引起的误差。测总铁,在采样后立刻用盐酸酸化至pH

火焰原子吸收光度法测定样本镍含量的仪器和试剂选择

仪器①原子吸收分光光度计;②镍空心阴极灯;③乙炔钢瓶或乙炔发生器;④空气压缩机(应备有除水、除油的净化装置)。仪器工作参数:可根据仪器使用说明书自行选择,下面表1 所列条件仅供参考。表1   工作条件测量波长灯电流光谱通带观测高度乙炔流量空气流量232.0 nm12.5 mA0.2 nm8 mm2.

火焰原子吸收光度法测定样本镍含量的方法的适用范围

本方法最低检出限为0.01 μg/ml,镍浓度在0.03~8 μg/ml范围内遵守比尔定律。本方法已应用于地表水和电镀、冶炼、机械制造、化工等厂矿含镍废水中镍的测定。

火焰原子吸收法测定样本锑含量的方法的仪器及工作条件

①原子吸收分光光度计。②工作条件(此为参考,可根据仪器说明书进行选择)如表1 所示。表1   工作条件光源灯电流测量波长光谱通带观测高度火焰类型锑空心阴极灯10 mA217.6 nm0.4 nm6.5~7.0 mm空气-乙炔火焰微富燃

火焰原子吸收法测定牛奶中钙含量

   食品中钙的测定方法,国家标准GBT5009192-2003中主要采用原子吸收分光光度法和滴定法,但样品均需消化处理。由于牛奶中蛋白质、钙含量较高,消化处理时较繁琐。本实验尝试牛奶及含乳饮料样品不经消化处理,直接用氧化镧溶液定容,火焰原子吸收分光光度法测定,取得较满意的实验结果,精确度、准确度较

火焰原子吸收法测定铁含量的方法原理

在空气-乙炔火焰中,铁、锰的化合物易于原子化,可分別于波长248.3 nm和279.5 nm处,测量铁、锰基态原子对铁、锰空心阴极灯特征辐射的吸收进行定量。

火焰原子吸收法测定铁含量的影响因素

影响铁、锰原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰,当硅的浓度大于50 mg/L时,对锰的测定也出现负干扰。这些干扰的程度随着硅浓度的增加而増加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁、锰的火焰原子吸收分析法基体干扰不太

火焰原子吸收法测定铁含量的操作步骤

操作步骤(1)样品预处理对于没有杂质堵塞仪器吸样管的清澈水样,可直接喷入火焰进行测定。如测总量或含有机质较高的水样时,必须进行消解处理。处理时先将水样摇匀,分取适量水样置于烧杯中,每100 ml水样加5 ml酸,置于电热板上在近沸状态下将样品蒸至近干。冷却后,重复上述操作一次。以(1+1)盐酸3 m