计算超分辨图像重建算法拓展荧光显微镜分辨率极限

自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。 近日,发表在《Nature Biotechnology》上的一项题为“Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy”的研究中,来自哈尔滨工业大学和北京大学的研究团队发明了基于新计算原理的超分辨显微成像技术,进一步拓展荧光显微镜的分辨率极限。在时空分辨率上成功将空间分辨率从110nm提高到60nm,同时保持毫秒级的时间分辨率 研究人员通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号时空连续性先验知识,发明了两步迭代解......阅读全文

新型超分辨显微技术的最新研究进展

从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。 在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不

新型超分辨显微技术的最新研究进展

从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。 在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像

光学显微镜的分辨率极限有多大

天纵检测(SKYLABS)在之前的《我们是否可使用光学显微镜观测到原子了?》文章中其实谈到了我们是无法使用光学显微镜观察到原子级别的物体的。今天在本期中,再给您介绍一下光学显微镜的分辨率极限到底是多少?其实光学显微镜的分辨率极限问题在1873年就被德国物理学家阿贝所解答了。阿贝通过计算推导发现了光学

想洞悉细胞线粒体内部精细结构?SIM超分辨技术有话讲!

生物圈的小伙伴肯定还记得前段时间的一则刷屏新闻:北京大学陈良怡教授团队和华中科技大学谭山教授团队合作,成功发明了一种新型结构光照明超分辨显微成像技术——海森结构光照明显微镜。研究成果于高水平学术期刊Nature Biotechnology(IF=41.67)进行了发表。之所以轰动,是因为该技

显微镜分辨率的计算

D=0.61λ/N*sin(α/2)D:分辨率λ:光源波长α:物镜镜口角(标本在光轴的一点对物镜镜口的张角)想要提高分辨率,可以通过:1、降低λ,例如使用紫外线作为光源;2、增大N,例如放在香柏油中;3、增大α,即尽可能地使物镜与标本的距离降低

三项第一!同济团队在国际比赛中获“大满贯”

近日,2025年IEEE国际计算机视觉与模式识别会议(CVPR)在美国举行。会上揭晓了超可见光谱感知挑战赛结果,同济大学计算机科学与技术学院教授赵生捷团队在全球300余支队伍中脱颖而出,在多模态视觉方向的3项核心挑战中以绝对优势获第一,实现“大满贯”。此外,团队的科研成果获大会官方特邀进行主会场汇报

利用图像的可压缩先验特性实现远场超分辨鬼成像

  在成像科学中,远场超分辨成像一直是一个重要的研究课题,如利用分子荧光实现远场超分辨成像的工作获得了2014年度的诺贝尔化学奖。在传统的光学成像中,成像分辨率主要受限于系统的瑞利衍射极限和探测信噪比。鬼成像是一种通过光场的涨落和关联对目标进行非局域成像的方法。对于传统的鬼成像线性重构算法而言,成像

5纳米分辨率荧光显微镜面世

细胞内部结构究竟如何?标准显微镜在回答这个问题方面无法胜任。在一项最新研究中,来自德国哥廷根大学、哥廷根医学中心和英国牛津大学的科学家,成功开发出一款分辨率达到5纳米的荧光显微镜。这款高分辨率显微镜有望揭示细胞内部极为细微的结构,促进生物医学等领域的发展。相关论文发表于最新一期《自然·光子学》杂志。

5纳米分辨率荧光显微镜面世

  细胞内部结构究竟如何?标准显微镜在回答这个问题方面无法胜任。在一项最新研究中,来自德国哥廷根大学、哥廷根医学中心和英国牛津大学的科学家,成功开发出一款分辨率达到5纳米的荧光显微镜。这款高分辨率显微镜有望揭示细胞内部极为细微的结构,促进生物医学等领域的发展。相关论文发表于最新一期《自然·光子学》杂

哈工大《自然光子学》发文,成像技术再获进展!

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503062.shtm哈工大全媒体(张德龙 文/图)近日,哈工大仪器学院青年教授李浩宇团队在生物医学超分辨显微成像技术领域取得突破性进展。针对目前超分辨显微镜所面临的成像通量限制,团队提出基于计算光学成像的

复旦团队造“实验神器”:显微镜秒变高清相机

  “不用最昂贵的镜头,也能拍出高清照片”,近年来,面对人们快速增长的影像清晰度需求,众多手机、数码相机厂商不断探索如何在控制成本的情况下,使用AI模型进一步提升像素级。这一次,同样的技术理念,却被复旦大学计算机科学技术学院教授颜波带领的团队迁移到了生命科学实验室里的常用研究工具“荧光显微镜”上。 

长春光机所提出傅里叶叠层恢复算法

  傅里叶叠层成像(FPM)是近年提出的一个可以获得大视场、高分辨率图像的测量方法。FPM的装置类似光学显微镜,只是将光源替换成一个LED阵列,通过按特定顺序点亮单个LED照明时在相机端获得一系列低分辨率(LR)图像,由于不同低分辨率图对应着样本频谱中的特定子区域,故可以通过优化算法在频域中将低分辨

复旦团队造“实验神器”:显微镜秒变高清相机

原文地址:http://news.sciencenet.cn/htmlnews/2024/4/520774.shtm“不用最昂贵的镜头,也能拍出高清照片”,近年来,面对人们快速增长的影像清晰度需求,众多手机、数码相机厂商不断探索如何在控制成本的情况下,使用AI模型进一步提升像素级。这一次,同样的技术

新型三角结构光照明显微镜问世-引领活细胞超分辨研究迈入新阶段

  在生命科学探索微观世界的征途上,看清细胞内部那些瞬息万变、尺度极小的精细结构,一直是科学家们孜孜以求的目标。这些极小尺度下的动态,如同生命活动的基础密码。如今,北京大学未来技术学院席鹏教授团队,从自然界最稳定的形状——三角形中获得启迪与灵感,研发出一款名为“三角形光束干涉结构光照明显微镜”(3I

细胞线粒体内部精细结构研究(一)

生物圈的小伙伴肯定还记得前段时间的一则刷屏新闻: 北京大学陈良怡教授团队和华中科技大学谭山教授团队合作,成功发明了一种新型结构光照明超分辨显微成像技术——海森结构光照明显微镜。研究成果于高水平学术期刊Nature Biotechnology(IF=41.67)进行了发表。 之所以轰动,是因为该技术拥

超分辨率显微镜分析在荧光抗体筛选的应用

1873年,德国医师Ernst Abbe 提出了“衍射极限”的概念。他预测,由于光的基本衍射性质,光学显微镜无法实现200nm以下的分辨率。实际上,当两个相隔很近的物点同时发光时,得到的图像是模糊的,无法分辨。超分辨率显微镜(SRM)的诞生打破了一个世纪多以来一直被认为无法突破的瓶颈。 如今,科

超分辨率显微镜成像助力学者探询神经回路

  来自哈佛大学的研究人员报告称,她们采用超高分辨率成像绘制出了神经元突触输入区的图谱。这一重要的研究成果发布在10月8日的《细胞》(Cell)杂志上。 论文的通讯作者是著名的华人女科学家庄小威(Xiaowei Zhuang)。庄小威早年毕业于中国科技大学少年班,34岁时成为了哈佛大学的化学和物理双

中国科大提出一种无标记暗场成像新技术

中国科学技术大学教授张斗国课题组结合微纳光学的光场调控技术和计算光学显微成像技术,提出了一种基于光子晶体随机散斑照明的超越衍射极限、无标记暗场成像新技术。该技术的提出将拓展暗场显微镜的潜在应用领域,并提供传统暗场显微技术所不能看到的样品细节信息。2月20日,相关研究成果以直投的方式发表于美国《国家科

超分辨率显微镜发展历程和技术原理

超分辨率显微镜发展历程 毫无疑问,自16世纪以来,光学显微镜已经历漫长的旅程。首次被知晓的复合显微镜是由Zacharias和Hans Janssen构造的。尽管这些显微镜没有保存下来,但人们确信这些显微镜已能够将放大倍率从3倍提高到9倍。17世纪末期,Leeuwenhoek首次将放大倍率和分辨率提高

超分辨率荧光显微技术的意义

利用超高分辨率显微镜,可以让科学家们在分子水平上对活体细胞进行研究,如观察活细胞内生物大分子与细胞器微小结构以及细胞功能如何在分子水平表达及编码,对于理解生命过程和疾病发生机理具有重要意义。

LSM​超分辨率和灵敏度。

超分辨率和灵敏度。      利用并行光谱采集和高速GPU去卷积的独特组合,提高图像质量。 Airyscan在横向120nm和轴向350nm的尺度上提供了高灵敏度的完美光学截面和超分辨率。这超越了去卷积方法,保留了在封闭针孔中通常被屏蔽了的宝贵的发射光信号,并实现了更高的分辨率

电子显微镜的分辨率极限是多少

电子显微镜的分辨率(约0.2纳米)远高于光学显微镜的分辨率(约200纳米)

华人学者发表重要技术突破:将分辨率推向极限

  蛋白质大多不是独行侠,它们喜欢形成复合物共同执行任务。跟踪观察这些分子机器的蛋白组分,对于理解生物学过程是至关重要的。获得诺贝尔奖的超高分辨率显微技术可以轻松分辨相距10-20nm的分子或分子复合物,但这些技术还不足以鉴别紧密复合物中的分子特征。  哈佛大学Wyss研究所的尹鹏(Peng Yin

光学超分辨显微成像重大突破!分辨率提高到100纳米以下

  近日,哈尔滨工业大学仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》(Sparse d

人类发育中胚胎最高分辨率图像

  现有许多荧光标记活细胞的方法都涉及对细胞的基因修饰,因此不适用于研究人类活胚胎。而在最新发表于《细胞》(Cell)上的一项研究中,研究者使用了一种无需基因修饰的荧光染色技术,并首次捕捉到了分辨率达细胞水平的早期人类胚胎实时发育图像。  研究使用的均为诊所捐赠的处于早期发育阶段的体外受精人类胚胎(

MolecularDevices发布超高分辨率图像处理系统

  Molecular Devices公司近日发布了MetaMorph®超高分辨率系统(MetaMorph® Super-Resolution System),实现了同步的图像获取和处理,为固定细胞和活细胞中小于250 nm的目标提供了细节。新系统特有实时的图像处理和GPU加速硬件,扩展了光

名词解释汇总:微量-X射线断层扫描相关监测指标(三)

插值 插值或内插(interpolation)是采用数学方法在一抑制函数的两端数值,估计该函数在两端之间任一值的方法。CT扫描采集的数据是离散的、不连续的,需要从两个相邻的离散值求得其间的函数值。内插的方法有很多种,例如线性内插、率过内插和优化采样扫描等

哈工大团队在光学超分辨显微成像技术领域取得重要突破

  16日,记者从哈尔滨工业大学获悉,该校仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。为精准医疗和新药研发提供了新一代生物医学超分辨影像仪器,使未来大幅度加速

空间分辨率的概念及计算公式

PPD (Pixels Per Degree) 角分辨率 或称 空间分辨率,指视场角中的平均每 1° 夹角内填充的像素点的数量。对于头戴显示类产品(如 VR眼镜、VR一体机、头戴影院、头戴 AR 等),PPD 数值越大,就说明对细节的显示越精细,用户对显示画面的感受就越清晰。不同于手机屏幕用 PPI

细胞线粒体内部精细结构研究(二)

2、改良了传统SIM方法产生衍射光栅的方法2D-SIM成像需要通过产生两束互相干涉的光来形成三种不同偏振方向,且光强在空间上呈正弦变化的结构光。在传统的SIM成像方法中,这一过程除了要依靠液晶硅基的空间光调制器(LCOS-SLM)对光相位进行调制之外,还需要一种特殊的光学器件来改变光的偏振方向——旋