原子荧光光谱分析仪MPT原子化器
MPT原子化器微波等离子体炬(MPT)是微波诱导等离子体的一种, 是1985年由金钦汉等提出并进行改进的一种新型光谱光源。MPT 装置的整体结构类似于 ICP 炬管,如下图所示,由三个同心金属管组成,外管的内径为22mm,外径为26mm;中间管的内径为 4.5mm,外径为5.5mm;内管(中心管)的内径为1~2mm,外径为3mm,均由紫铜材料制成。等离子体气从中间管引入,样品气溶胶由载气通过中心管引入。 在等离子体炬管的中间管顶端上方形成焰炬。微波能则由环绕中间管的内径6mm圆筒形天线耦合到等离子体中,移动该天线可选择最佳耦合状态。点火用 Tesla 线圈引燃。MPT 的结构不同于 MIP,它与 ICP 光源一样有中间通道,试样气溶胶可穿过中间通道被加热。MPT 有如下优点:①等离子体热源区和受热区分开,试样对等离子体的影响较小;②改善了等离子体对湿气溶胶和分子类物质的承受能力,使湿气溶胶直接进......阅读全文
原子荧光光谱分析仪MPT原子化器
MPT原子化器微波等离子体炬(MPT)是微波诱导等离子体的一种, 是1985年由金钦汉等提出并进行改进的一种新型光谱光源。MPT 装置的整体结构类似于 ICP 炬管,如下图所示,由三个同心金属管组成,外管的内径为22mm,外径为26mm;中间管的内径为 4.5mm,外径为5.5mm;内管(中心管)
原子荧光光谱分析仪MIP原子化器
MIP原子化器微波诱导等离子体(MIP)的装置由微波发生器和等离子体炬管两部分组成,其中的微波发生器频率为2450MHz,功率一 般为40〜150W。支持气体为氮气、氯气或氮气。工作时先用高频火花放电装置(Tesla 变压器)点燃等离子体,微波能量通过电感耦合到等离子体炬管(谐振腔),通过谐振腔传
原子荧光光谱分析仪火焰原子化器
火焰原子化器是早期的原子荧光光谱分析中最常用的一种原子化器,其主要原因一方面是这类原子化器装置简单,操作简便;另 一方面是由于早期的原子荧光仪器装置都是由原子吸收仪器改装而 来,而火焰原子化器是原子吸收光谱仪中最通用的原子化器,因此 也就很自然地成了早期原子荧光仪器首选的原子化器。火焰原子化器产生的
原子荧光光谱分析仪等离子体原子化器之ICP原子化器
曾作为原子荧光原子化器的等离子体有电感耦合等离子体 (inductively coupled plasma, ICP)、微波诱导等离子体(microwave induced plasma, MIP)和微波等离子体炬(microwave plasma touch, MPT)。下面简要地介绍一下这三
原子荧光光谱分析仪无火焰原子化器
原子荧光仪器曾经使用过的无火焰原子化器主要是电热原子化器,包括石墨炉、石墨杯或石墨棒和以担、钳、鸨等金属材料制成 的金属炉、金属丝或金属舟等,其中用得最多的是石墨炉原子化 器。因此现以石墨炉原子化器为例,简要地介绍一下其原子化过 程。石墨炉原子化器的基本工作原理是:将试样放置在石墨管内, 用大电流通
原子荧光光谱分析仪石英管原子化器
石英管原子化器应用于原子荧光光谱仪中的石英管原子化器主要用于氢化物的原子化。早期的石英管原子化器是用一个开口的石英管制成的,如下图所示,石英管直接连接在所选定的燃烧气体混合室和氢化物发生器上,并把易挥发的氢化物引入火焰中进行原子化。燃烧气体可以是乙焕-空气、氢气-空气或氢气-氧气。 在我国的氢化物发
原子荧光光谱法-气泡冲入原子化器
气泡冲入原子化器,怎么回事? 1. 炉子下面水封水面有问题。气压是否大了。看蠕动泵的管道,以及进液的时候溶液端看看。 2. 水封的问题,里面有可能气压过大,把水封管子拔掉再连上也许就能解决 3. 排废液泵块压力太小,产生的废液不能及时排出,重新调整看看。 4. 1、样品溶液中有机质过多,建议加入消泡
实验室光谱仪器MPT-原子/离子荧光光谱
无论使用 HCL 或 Xe 弧灯、Ar 或 He, MIP 都可以用作原子荧光光谱的原子化器,开展对碱金属、碱土金属以及过渡金属元素的原子荧光光谱研究;普通 HCL 与 Xe 弧 灯作激发源的 Ar MIP-AFS 对所研究元素的原子荧光光谱的检出限基本相当,都表现为碱金属、碱土金属元素的检出限比其
沉痛悼念!著名光谱专家、MPT光谱仪发明人金钦汉教授
据悉,我国著名分析化学家、微波等离子体炬(MPT)激发光源的发明人、浙江大学金钦汉教授,于2025年6月15日逝世,享年88岁。金钦汉,浙江省东阳市人,1937年10月27日生,中国共产党党员,曾任吉林大学研究生院院长、吉林省光谱仪器工程技术研究中心主任、中国电子学会微波分会微波化学委员会主任、
实验室光谱仪器离子荧光光谱分析的发展前景
等离子体原子/离子荧光光谱是独具特色的痕量、超痕量元素分析工具。作为一种简单、实用的光谱分析技术,尽管在多年的发展历史上远远没有达到理论上应有的研究和应用水平,在仪器结构中还有很多需要改进和完善之处,如发展新型大功率激发光源、研 究新型原子化器/离子化器以及使用新型检测器件等。结合电子学、计算机、激
原子荧光光谱仪气路、原子化器的维护注意
目前原子荧光光谱仪,无论从硬件还是操作软件方面都已经做到简单和实用,但仪器使用及维护细节仍特别值得注意,否则也极易造成荧光强度不稳定的现象发生。 气路 外路气体进入仪器后分为屏蔽气和载气两路。载气流量降低时,不能将反应物充分带入原子化器。表现为荧光强度低且不稳定。常见原因有:(1)流
原子荧光光谱仪气路、原子化器的维护注意
目前,原子荧光光谱仪无论从硬件还是操作软件方面都已经做到简单和实用,但仪器使用及维护细节仍特别值得注意,否则也极易造成荧光强度不稳定的现象发生。 气路 外路气体进入仪器后分为屏蔽气和载气两路。载气流量降低时,不能将反应物充分带入原子化器。表现为荧光强度低且不稳定。常见原因有:(1)流路系统管路接
原子荧光光谱仪光度计的组成—原子化器
原子化器 将被测元素转化为原子蒸气的装置。可分为火焰原子化器和电热原子化器。火焰原子化器是利用火焰使元素的化合物分解并生成原子蒸气的装置。所用的火焰为空气-乙炔焰、氩氢焰等。用氩气稀释加热火焰,可以减小火焰中其他粒子,从而减小荧光猝灭(受激发原子与其它粒子碰撞,部分能量变成热运动与其他形式的能
实验室光谱仪器原子荧光光谱仪的原子化器概述
原子化器是原子荧光光谱仪中一个直接影响元素分析的灵敏度 和检出限的关键部件,其主要作用是将被测元素(化合物)原子化形成基态原子蒸气。一个理想的用于原子荧光光谱仪的原子化器应具有下列特点:①原子化效率高,被测原子的密度大;②在光路中原子有较长的停留时间;③在测量波长处具有较低的背景辐射;④均匀性和稳定
原子荧光光谱仪气路、原子化器的维护注意事项
目前,原子荧光光谱仪无论从硬件还是操作软件方面都已经做到简单和实用,但仪器使用及维护细节仍特别值得注意,否则也极易造成荧光强度不稳定的现象发生。 气路 外路气体进入仪器后分为屏蔽气和载气两路。载气流量降低时,不能将反应物充分带入原子化器。表现为荧光强度低且不稳定。常见原因有:(1)流路系
原子荧光光谱仪气路、原子化器的维护注意事项
目前,原子荧光光谱仪无论从硬件还是操作软件方面都已经做到简单和实用,但仪器使用及维护细节仍特别值得注意,否则也极易造成荧光强度不稳定的现象发生。 气路 外路气体进入仪器后分为屏蔽气和载气两路。载气流量降低时,不能将反应物充分带入原子化器。表现为荧光强度低且不稳定。常见原因有:(1)流路系
实验室光谱仪器原子荧光光谱仪原子化器的种类及原理
原子化器是原子荧光光谱仪中一个直接影响元素分析的灵敏度和检出限的关键部件,其主要作用是将被测元素(化合物)原子化形成基态原子蒸气。在国外的原子荧光发展过程中曾经使用过的原子化器有火焰原子化器、无火焰原子化器(电热原子化器、阴极溅射室)和等离子体原子化器等;在我国的氢化物发生-无色散原子荧光商品仪器中
等离子体原子/离子荧光光谱实验装置
进行等离子体原子荧光、离子荧光光谱分析的实验装置基本一致,仅需更换某些部件即可在同一实验装置上同时进行原子荧光、 离子荧光光谱研究。这样的实验装置主要由激发光源、原子化器/ 离子化器、分光系统、检测系统以及控制和记录系统组成。研究中因使用不同的激发光源和原子化器/离子化器,而使用不同的分光系统和荧光
郑国经:从BCEIA-2019看国产原子光谱分析仪器
近日,在2019年北京光谱年会(2019北京光谱年会——人工智能与光谱的结合)上,郑国经老师带来了“从BCEIA2019看国产原子光谱分析仪器”的报告。中实国金国际实验室能力验证研究中心郑国经老师 郑国经老师表示,两年一届的第18届BCEIA仪器展览会在2019年新形势下显得比往年规模都大,参
原子荧光光度计的原子化器的介绍
原子荧光光度计的原子化器将被测元素转化为原子蒸气的装置。可分为火焰原子化器和电热原子化器。火焰原子化器是利用火焰使元素的化合物分解并生成原子蒸气的装置。所用的火焰为空气-乙炔焰、氩氢焰等。用氩气稀释加热火焰,可以减小火焰中其他粒子,从而减小荧光猝灭(受激发原子与其它粒子碰撞,部分能量变成热运动与
原子荧光小常识—原子化器无火焰,怎么办?
随着我国电子、皮革、冶金等工业的发展,重金属污染情况也是愈加严重。为此,国家制定了一系列相关标准来减少重金属污染对人体和环境的伤害。检测砷、汞等重金属元素的仪器有很多,在我国应用比较多的是原子荧光光谱仪(AFS),也叫做原子荧光光度计。北京金索坤技术开发有限公司是市面上*一家只专注原子荧光光谱仪
原子荧光光谱仪原子荧光分类(二)
非共振原子荧光 当激发原子的辐射波长与受激原子发射的荧光波长不相同时,产生非共振原子荧光。非共振原子荧光包括直跃线荧光、阶跃线荧光与反斯托克斯荧光, 直跃线荧光是激发态原子直接跃迁到高于基态的亚稳态时所发射的荧光,如Pb405.78nm。只有基态是多重态时,才能产生直跃线荧光。阶跃线荧光是激
原子荧光光谱仪原子荧光分类(三)
敏化原子荧光 激发原子通过碰撞将其激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射荧光,此种荧光称为敏化原子荧光。火焰原子化器中的原子浓度很低,主要以非辐射方式去活化,因此观察不到敏化原子荧光。
原子荧光光谱仪原子荧光分类(一)
当自由原子吸收了特征波长的辐射之后被激发到较高能态,接着又以辐射形式去活化,就可以观察到原子荧光。原子荧光可分为三类:共振原子荧光、非共振原子荧光与敏化原子荧光。 共振原子荧光 原子吸收辐射受激后再发射相同波长的辐射,产生共振原子荧光。若原子经热激发处于亚稳态,再吸收辐射进一步激发,然后再发
原子荧光光谱详解
原子荧光光谱法(AFS)是一种痕量分析技术,是原子光谱法中的一个重要分支。是介于原子发射光谱法(AES)和原子吸收光谱法(AAS)之间的光谱分析技术 ,所用仪器及操作技术与原子吸收光谱法相近。 (一)AFS的发展历程 •1859年开始原子荧光理论的研究 •1902年首次观察到钠的原子荧光
原子荧光光谱介绍
原子荧光光谱是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析
原子荧光光度计原子化器无火焰怎么解决
如果原子化器无火焰可能的原因有:点火炉丝上出了问题、进样不正常或者硼氢化钾失效。 如果是点火炉丝出现问题首先要检查点火炉丝的连线和插头,如果都没有问题,那就可能是点火炉丝烧断这时就需要更换点火炉丝;另外,进样不正常或者硼氢化钾失效致使氢化反应不能正常进行也是导致原子化器无火焰的原因。此时,就需
AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)...
AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)异同点AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三
原子发射光谱和原子荧光光谱的区别
根本差别在于激发基态原子的外层电子跃迁的方式,发射光谱属于热致激发,即基态原子吸收热量后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线;分子荧光则是属于光致激发,基态原子受光辐射后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线。
原子吸收光谱仪的原子化器简介
原子化器(atomizer) 可分为预混合型火焰原子化器(premixed flame atomizer),石墨炉原子化器(graphite furnace atomizer),石英炉原子化器(quartz furnace atomizer),阴极溅射原子化器(cathode sputteri