如何在拉曼光谱中抑制荧光背景

1、表面增强技术,现在又表面增强的芯片或者溶液,这个不能算抑制,只是提高信号的强度2、主要是选用荧光效应小的激光器,比如1056nm的。......阅读全文

荧光原位杂交的背景

  对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度:  较低的细胞核糖体含量  较低的细胞周边的通透性  较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交)  为检验细胞中的目标序列是

荧光原位杂交技术的背景

  对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度:  较低的细胞核糖体含量  较低的细胞周边的通透性  较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交)  为检验细胞中的目标序列是

荧光原位杂交技术的背景

  对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度:  较低的细胞核糖体含量  较低的细胞周边的通透性  较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交)  为检验细胞中的目标序列是

如何在拉曼光谱中抑制荧光背景

改变激发光波长,选择一个荧光效应最小的

如何在拉曼光谱中抑制荧光背景

1、表面增强技术,现在又表面增强的芯片或者溶液,这个不能算抑制,只是提高信号的强度2、主要是选用荧光效应小的激光器,比如1056nm的。

TUNEL检测出现荧光背景很高的原因

a. 支原体污染。请使用支原体染色检测试剂盒检测是否为支原体污染。b. 高速分裂和增殖的细胞,有时也会出现细胞核中的DNA断裂。c. TUNEL反应过强。可以用试剂盒提供的TdT酶稀释液稀释TdT酶2-5倍后再按照说明书操作。稀释后的TdT酶需当日使用。d. 红细胞中血红蛋白导致的自发荧光产生严重干

荧光显微镜背景充分黑暗的原因,原理

我能够想到四个重要因素影响背景是亮还是暗(我的经验来自生物学的组织/细胞免疫荧光染色实验):光圈。光圈开得大,顾名思义所有光信号包括背景信号都会增强。曝光时间。光信号再强,你只选取其中很少一部分来成像,也能够控制图像中的信号强度。样品/玻片本身的自发荧光。样品的非特异性染色。总体是一个所有检测手段中

荧光原位杂交技术的定义、原理、背景及优势

  荧光原位杂交方法是一种物理图谱绘制方法,使用荧光素标记探针,以检测探针和分裂中期的染色体或分裂间期的染色质的杂交。荧光原位杂交技术是一种重要的非放射性原位杂交技术。  它的基本原理是:如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性-退火-复性,即可形成靶D

荧光显微镜背景充分黑暗的原因,原理

我能够想到四个重要因素影响背景是亮还是暗(我的经验来自生物学的组织/细胞免疫荧光染色实验):光圈。光圈开得大,顾名思义所有光信号包括背景信号都会增强。曝光时间。光信号再强,你只选取其中很少一部分来成像,也能够控制图像中的信号强度。样品/玻片本身的自发荧光。样品的非特异性染色。总体是一个所有检测手段中

荧光显微镜背景充分黑暗的原因,原理

光圈。光圈开得大,顾名思义所有光信号包括背景信号都会增强。曝光时间。光信号再强,你只选取其中很少一部分来成像,也能够控制图像中的信号强度。样品/玻片本身的自发荧光。样品的非特异性染色。总体是一个所有检测手段中共通的问题,即信噪比,信号与噪声比率。1,2对信噪比影响不大,在背景过强时很难通过调整1,2

火焰原子荧光光谱仪产生的背景及原理分析

70年代末,为了满足国家地质普查找矿大量测试砷、锑、铋、汞元素的需求,具有中国自主知识产权的分析仪器氢化法原子荧光光谱仪应运而生。凭借着其灵敏度高,稳定性好,性价比高的特点,除了在地质行业逐渐普及到环保、食品等其他领域。但是氢化法原子荧光由于可有效发生氢化法反应的元素种类有限,局限了原子荧光的应用。

滑环的背景

  近代,在工业设备的高端领域中,多有诸如公转、自转等多元相对运动的要求。即机械设备360°连续旋转运动的同时,旋转体上还需要多元运动。有运动,就需要能源,如电能源、流体压力能源等。有时,也需要控制信号源,如光纤信号、高频信号等。任何相对连续旋转360°的电气部件之间需要传输功能电源、弱电信号、光信

背景沿着散点图

感兴趣区域的水平边界和竖直边界应该排除背景信号,背景沿着散点图的 x轴和 y 轴团簇。只有被包括在所选择区域边界内的像素信号才能进行共定位分析。样品上重叠的像素区域很容易转变成共定位二元阈值像(图 4b),这个图还可以和共聚焦图叠加在一起,做一个共定位 map. 图 4c 显示的共定位 map 图用

消毒箱的背景

  结合医疗单位严格消毒物件的有关规定,技术部针对性的进行技术改进,研制定做出了具有温控、抽气等功能的消毒熏箱。  该产品全部采用美国( 杜邦公司)、日本( 三菱公司)进口材料制造,具有抗冲击力、重量轻、使用方便,消毒效果好等特点,经多家 医疗机构使用后认可,现被推广使用

基因测序产生背景

史蒂夫·乔布斯曾接受过全基因测序基因测序,本是一种实验室研究技术手段,因“名人效应”应用于高端体检、产前诊断等领域,价格不菲。基因测序最广为人知的,是影星安吉丽娜·朱莉通过基因检测,选择手术切除乳腺以降低患乳腺癌风险。2011年去世的苹果公司创始人史蒂夫·乔布斯患癌时,也曾接受过全基因测序。基因测序

基因测序产生背景

  史蒂夫·乔布斯曾接受过全基因测序  基因测序,本是一种实验室研究技术手段,因“名人效应”应用于高端体检、产前诊断等领域,价格不菲。基因测序最广为人知的,是影星安吉丽娜·朱莉通过基因检测,选择手术切除乳腺以降低患乳腺癌风险。2011年去世的苹果公司创始人史蒂夫·乔布斯患癌时,也曾接受过全基因测序。

液体活检背景介绍

近年来,肿瘤诊疗技术已取得很大进步,但是癌症依然是导致人类死亡的主要因素。癌症转移是造成癌症患者死亡的重要因素,同时转移过程相对复杂,增加了癌症诊疗的困难。因此,对于癌症,做到早期诊断、实时监测和准确预后是非常关键的。目前,传统的组织活检方式存在很多问题,如:成本高、取样难、创伤大等,且难以做到“早

宇宙微波背景辐射

宇宙微波背景辐射1965年,美国贝尔电话实验室的彭齐亚斯(Arno Penzias,1933-)(左一)和威尔逊(R.W.Wilson)(左二)无意中发现了大爆炸理论预言的宇宙微波背景辐射。他们本想要使用一根大型通信天线进行射电天文学的实验研究,但因不断受到一个连续不断本底噪声的干扰,使得实

背景选择的概念

中文名称背景选择英文名称background selection定  义负选择的一种形式。不仅清除有害突变,而且同时清除与其连锁的位点。应用学科遗传学(一级学科),进化遗传学(二级学科)

红外热像仪研究背景

  由来:1800年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动

简述X射线荧光光谱化学分析熔铸玻璃片法的应用背景

  X射线荧光光谱化学分析熔铸玻璃片法,是用熔铸玻璃片法制样,以消除矿物和粒度效应,将样品铸成适合X射线荧光光谱仪测量形状的玻璃片,测量玻璃片中待测元素的X射线荧光强度,根据校准曲线来得到待测元素含量。

基因测序产后背景

  史蒂夫·乔布斯曾接受过全基因测序  基因测序,本是一种实验室研究技术手段,因“名人效应”应用于高端体检、产前诊断等领域,价格不菲。基因测序最广为人知的,是影星安吉丽娜·朱莉通过基因检测,选择手术切除乳腺以降低患乳腺癌风险。2011年去世的苹果公司创始人史蒂夫·乔布斯患癌时,也曾接受过全基因测序。

冷冻电镜发展背景

冷冻电镜发展背景人类基因组计划的完成,标志着科学已进入后基因组时代。虽然大量的基因序列得到阐明,但是生物大分子如何从这些基因转录、翻译、加工、折叠、组装,形成有功能的结构单元,尚需进一步的研究。后基因组时代人类面临的一个挑战是解析基因产物—蛋白质的空间结构,建立结构基因组学,并在原子水平上解释核酸—

tRNA相关研究背景介绍

  A. 概述   转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRN

tRNA相关研究背景介绍

  A. 概述   转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRN

红外热像仪的研发背景

  由来:1800年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动

tRNA相关研究背景介绍

  A. 概述   转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRN

绝对计数的研究背景

  多发性骨髓瘤(multiple myeloma, MM)是一种B细胞的恶性肿瘤,中老年人常见,以骨髓中积聚大量的恶性浆细胞并分泌单克隆免疫球蛋白为特征。骨髓瘤的临床表现较复杂,而且影响预后的因素也很多,生存期从数月到数十年不等。传统的预后指标包括年龄、浆细胞指数、β2-微球蛋白(β2-MG)、分

金电极的背景技术

背景技术自组装分子膜在20世纪80年代出现后迅速成为材料科学、微电子学、生物学等领域的研究焦点。通过设计不同自组装分子,可以得到各种功能界面,为人们的科学研究提供新的方法和手段。目前DNA生物传感器的DNA探针分子吸附方法主要有四种直接吸附经过修饰的核酸分子,吸附核酸探针之后用硫醇填冲、吸附硫醇之后

色谱系统背景消除

与GC-MS相比,LC-MS 的系统噪声要大得多,它产生于大量的溶剂及其所含杂质直接导入离子化室造成的化学噪声及在高电场中的复杂行为所产生的电噪声。这些噪声常常会淹没信号,以至于有时在总离子流(TLC)图上无法看到峰的出现。在LC-MS分析中,消除系统噪声可从以下几个方面入手。1.有机溶剂和水