科学家观察到室温三阶非线性霍尔效应

近日,南洋理工大学教授高炜博和新加坡科技设计大学教授杨声远课题组在II型外尔(Weyl)半金属TaIrTe4(碲化铱铊)中观察到了显著的室温三阶非线性霍尔效应,为其在新型量子材料中的应用提供了可能。相关成果发表在《国家科学评论》(NSR)上。 霍尔效应一直是凝聚态物理研究的一个主流方向。近年来,科学家们在非磁系统中发现了一种不需要磁场的二阶霍尔效应,拓展了霍尔效应家族的新成员。二阶非线性霍尔效应与对称性和拓扑学有着深厚的联系,其中一个重要物理机制归因于贝里曲率偶极子(Berry curvature dipole)。当线性和二阶的霍尔效应被系统的对称性抑制时,寻找二阶以上更高阶的非线性霍尔效应也是科学家近期关注的热点话题。 2021年,高炜博和杨声远课题组报道了在MoTe2(碲化钼)和WTe2(碲化钨)材料中的三阶非线性霍尔效应,并指出该三阶效应起源于能带几何量贝利联络极化率(Berry connection polar......阅读全文

室温非线性霍尔效应

  最新Nature Nanotechnology:室温非线性霍尔效应  几何相位和拓扑之间的紧密联系使得基于霍尔效应的现象已成为现代材料和物理学的主要研究重点之一,这促使了人们对物质拓扑态的探索和许多相应实际应用的开发。在线性响应方式下,霍尔电导率需要通过磁化或外部磁场来打破时间反演对称性。但最近

科学家观察到室温三阶非线性霍尔效应

   近日,南洋理工大学教授高炜博和新加坡科技设计大学教授杨声远课题组在II型外尔(Weyl)半金属TaIrTe4(碲化铱铊)中观察到了显著的室温三阶非线性霍尔效应,为其在新型量子材料中的应用提供了可能。相关成果发表在《国家科学评论》(NSR)上。  霍尔效应一直是凝聚态物理研究的一个主流方向。近年

复旦大学制备首个石墨烯三阶非线性效应电光器件

复旦大学吴施伟课题组实现了石墨烯中三阶非线性效应的电学调控并揭示了其机理。近日,该成果以长文形式在线发表于《自然—光子学》杂志。 石墨烯具有强烈的三阶非线性效应。这使其在微纳光子学、激光产业、生物成像等领域具有巨大的应用潜力。然而,过去的实验报道无法对石墨烯三阶非线性系数形成统一的观点,不同实验

复旦大学制备首个石墨烯三阶非线性效应电光器件

  复旦大学吴施伟课题组实现了石墨烯中三阶非线性效应的电学调控并揭示了其机理。近日,该成果以长文形式在线发表于《自然—光子学》杂志。图片来源网络   石墨烯具有强烈的三阶非线性效应。这使其在微纳光子学、激光产业、生物成像等领域具有巨大的应用潜力。然而,过去的实验报道无法对石墨烯三阶非线性系数形成统一

复旦大学制备首个石墨烯三阶非线性效应电光器件

复旦大学吴施伟课题组实现了石墨烯中三阶非线性效应的电学调控并揭示了其机理。近日,该成果以长文形式在线发表于《自然—光子学》杂志。石墨烯具有强烈的三阶非线性效应。这使其在微纳光子学、激光产业、生物成像等领域具有巨大的应用潜力。然而,过去的实验报道无法对石墨烯三阶非线性系数形成统一的观点,不同实验结果甚

光磁电效应和霍尔效应的异同

虽然,光磁电效应与霍尔效应相似,但是它们是不同的效应。体现在三个方面,1)光磁电效应中在磁场作用下移动的是电子空穴对,而霍尔效应中移动的是自由电子。2)针对材料不同,一个是半导体材料,一个是导体材料。3)使用情形也不一样,一个需要光照,一个不需要。利用光磁电效应可制成半导体红外探测器。这类半导体材料

光磁电效应和霍尔效应的异同

光磁电效应和霍尔效应的异同虽然,光磁电效应与霍尔效应相似,但是它们是不同的效应。体现在三个方面:1)光磁电效应中在磁场作用下移动的是电子空穴对,而霍尔效应中移动的是自由电子。2)针对材料不同,一个是半导体材料,一个是导体材料。3)使用情形也不一样,一个需要光照,一个不需要。利用光磁电效应可制成半导体

霍尔效应测试仪简介

  霍尔效应测试仪,是用于测量半导体材料的载流子浓度、迁移率、电阻率、霍尔系数等重要参数,而这些参数是了解半导体材料电学特性必须预先掌控的,因此是理解和研究半导体器件和半导体材料电学特性必备的工具。  霍尔效应测试仪介绍  该仪器为性能稳定、功能强大、性价比高的霍尔效应仪,在国内高校、研究所及半导体

反常霍尔效应研究取得进展

  反常霍尔效应是最基本的电子输运性质之一。虽然反常霍尔效应早在1881年就被Edwin Hall发现,但其微观机制的建立却经历了一百余年的漫长历程。本世纪初,牛谦等人的理论工作揭示了反常霍尔效应的内禀机制与材料能带结构的贝里曲率有关,并得到了广泛的实验支持,反常霍尔效应也因此成为当今凝聚态物理研究

关于霍尔效应实验仪的概述

   霍尔效应实验仪可形象地观察到霍尔电势的产生、了解霍尔传感器的道理。线圈的励磁电流、霍尔传感器的工作电流换向可用闸刀控制,也可选用继电器控制。继电器取代双刀双掷开关,大大提高了仪器的可靠性,减少故障。FB510 A 型霍尔效应实验仪用亥姆霍兹线圈或螺线管产生稳恒磁场,线圈的励磁电流、霍尔传感器的

霍尔效应实验仪的性能特点

  1. 把励磁电流、霍尔传感器工作电流和霍尔电压接口采用不同规格的插座和专用连接线,接线互换是插不到插座中的,完全消除了接线错误的可能性,防止损坏霍尔片和设备确保仪器安全。  2. 励磁电流、霍尔传感器的工作电流换向均用继电器控制,取代了过去传统的双刀双掷开关,最大的优点是大大提高了仪器的可靠性,

非线性自聚焦效应-RP-Fiber-Power

首先计算了大模场面积的基模随非线性自聚焦效应的收缩。模式求解中通常会忽略非线性效应。然而,编写数行程序代码,即可设置折射率分布及其非线性的变化,继而重复计算光纤模式,直至出现自洽解。该程序也说明了光束传输的应用,可模拟高功率下光束分布的变化。用户可以采用LP01(低功率)与LP11模式的叠加

FeSe单晶的高压霍尔效应研究获进展

  费米面拓扑结构及其与磁性的相互关联,被认为是理解铁基高温超导机理的关键。大多数FeAs基高温超导体的能带结构包含位于布里渊区中心的空穴型费米面和位于布里渊区顶角的电子型费米面,因此,空穴和电子费米面之间的散射被普遍认为是铁基超导电子配对的重要机制。但是,在FeSe基高温超体系中,包括AxFe2-

霍尔效应测试仪的主要特点

  1、高精密度电流源  输出电流之精确度可达2nA,如此微小之电流可用于半绝缘材料之量测,即高电阻值材料之量测。  2、高精密度电表  使用超高精度电表,电压量测能力可达nV等级,上限可达300V,极适合用于量测低电阻值材料。  3、外型精简、操作简单  外型轻巧、美观大方,磁铁组之极性更换也很灵

“量子反常霍尔效应”研究取得重大突破

  由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,最近成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。  量子霍尔效应是整个凝聚态物理领域最重要、最

FeSe单晶的高压霍尔效应研究获进展

  费米面拓扑结构及其与磁性的相互关联,被认为是理解铁基高温超导机理的关键。大多数FeAs基高温超导体的能带结构包含位于布里渊区中心的空穴型费米面和位于布里渊区顶角的电子型费米面,因此,空穴和电子费米面之间的散射被普遍认为是铁基超导电子配对的重要机制。但是,在FeSe基高温超体系中,包括AxFe2-

霍尔效应测试仪的技术参数

  1、变温,常温和液氮温度(77K)下测量;  阻抗:10-6 to 107  载流子浓度(cm-3):107  -1021  2、样品夹具:  弹簧样品夹具(免去制作霍尔样品的麻烦);  3、测量材料:所有半导体材料包括Si,ZnO,SiGe,SiC,GaAs,InGaAs,InP,GaN(N型

物理所等反常霍尔效应研究取得进展

  反常霍尔效应是最基本的电子输运性质之一。虽然反常霍尔效应早在1881年就被Edwin Hall发现,但其微观机制的建立却经历了一百余年的漫长历程。本世纪初,牛谦等人的理论工作揭示了反常霍尔效应的内禀机制与材料能带结构的贝里曲率有关,并得到了广泛的实验支持,反常霍尔效应也因此成为当今凝聚态物理研究

逆自旋霍尔效应-微波能量转化为电能?(二)

  一言以蔽之,逆自旋霍尔效应是可行的(如本文相关图表和论文);它是自旋电子学的新应用,在某些方面丰富了业已不断成长可用于收集磁自旋的自旋电子效应和装置工具箱。接下来,需要精确测量其效率并尝试进行一些适当的应用,以便检测逆自旋霍尔效应对于未来的有机半导体多么有帮助。  “我们研究的目标在于展

逆自旋霍尔效应-微波能量转化为电能?(一)

  随着来自手机讯号基地台、行动装置、Wi-Fi、蓝牙与5G等产生越来越多的微波充斥全世界,很自然地,科学家开始探讨将这些微波转化成能量的方法。美国犹他大学(University of Utah)的科学家们发现了一种新方法,可在有机半导体中将微波能量转化为电能。  在实验室中,研究人员证

简介霍尔效应实验仪的使用说明

  1、实验仪测试架各接线插座连线说明如下:  (1)霍尔元件的工作电流Is(专用二芯插座及护套线)  (2)霍尔电压VH或霍尔元件电压降Vs输出端(专用四芯插座及护套线)  (3)继电器工作电流连接(专用三芯插座及护套线)  (4)测试仪连接到测试架的亥姆霍兹线圈(或螺线管)励磁电流输入端用红色与

霍尔效应传感器的基本参数

  标准额定值IPN和额定输出电流ISN  IPN指电流传感器所能测试的标准额定值,用有效值表示(A.r.m.s),IPN的大小与传感器产品的型号有关。  ISN指电流传感器额定输出电流,一般为100~400mA,某些型号可能会有所不同。  传感器供电电压VA  VA指电流传感器的供电电压,它必须在

使用霍尔效应实验仪的注意事项

  1、霍尔传感器各电极引线与对应的电流换向开关(本实验仪器采用按钮开关控制的继电器)的连线已由制造厂家连接好,实验时不必自己连接。  2、霍尔片性脆易碎,电极甚细易断,严防撞击或用手去摸,否则容易损坏!霍尔片放置在亥姆霍兹线圈中间,在需要调节霍尔片位置时,亦需要小心谨慎。  3、二维(或一维)移动

科学家发现陈数可调量子反常霍尔效应

量子霍尔效应是一种在外加强磁场下由于朗道能级量子化导致无耗散的量子输运特性。然而,外加强磁场这一需求极大限制了该效应的实际应用前景。近几十年来,探索无磁场的量子霍尔效应(即量子反常霍尔效应)吸引物理学家的关注,并在理论和实验上取得很大进展。目前,已经提出或实现的量子反常霍尔效应集中在陈数为1或者2的

我国学者发现陈数可调量子反常霍尔效应

  记者18日从中国科学技术大学获悉,该校合肥微尺度物质科学国家研究中心乔振华教授研究组,基于单层过渡金属氧化物发现了理论上陈数可调的量子反常霍尔效应。该成果日前发表在物理类国际学术期刊《物理评论快报》上,并被选为当期封面。  量子霍尔效应是一种在外加强磁场下由于朗道能级量子化导致的无耗散的量子输运

英专家:量子反常霍尔效应预示新时代的来临

  中国科学家从实验中首次观测到量子反常霍尔效应,英国牛津大学专家对此发现予以高度评价,并指出这一成果预示着一个令人兴奋的新时代的来临。   牛津大学物理系讲师索斯藤·赫斯耶达尔说:“这一成果预示着一个令人兴奋的新时代的来临——对于基础物理学来说,观察到量子反常霍尔效应让研究新的量子系统成为可能;

简述霍尔效应实验仪的主要技术性能

  1.使用环境条件:温度:5~35℃ 相对湿度:25~80%  2.绝缘强度:仪器经1000V 50Hz 正弦电压 1min 耐压试验无击穿、闪烁现象。  3.亥姆霍兹线圈:有效半径 R=38mm  线圈匝数 1500匝(单线圈)  线圈间距L=R=38mm  4.螺线管线圈:匝数为:N=2550

拓扑绝缘体内奇异量子效应室温下首现

科技日报北京10月27日电 (记者刘霞)据《自然·材料》杂志10月封面文章,美国科学家在研究一种铋基拓扑材料时,首次在室温下观察到了拓扑绝缘体内的独特量子效应,有望为下一代量子技术,如能效更高的自旋电子技术的发展奠定基础,也将加速更高效且更“绿色”量子材料的研发。 拓扑绝缘体是一种特殊的材料,内

中国科学家实验上发现量子反常霍尔效应

  由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年的不懈探索和艰苦攻关,最近成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成的。  量子霍尔效应是整个凝聚态物理领域最重要、最基

德国研制柔性超薄霍尔效应传感器-应用前景广泛

   霍尔效应传感器目前已在机器人及各种智能设备上获得广泛应用,成为一种标准的传感器。但目前常用的此类传感器为刚性材料制成,且体积较大(厚度约0.5毫米)。德国莱布尼茨固体物理与材料研究所的研究人员,用聚酰亚胺或聚醚醚酮(PEEK)薄膜材料作为基底,在其上喷射形成约230 纳米厚度的金属铋