质谱分析技术的离子源的介绍
在早期的质谱研究中,涉及的样品一般为无机物,检测目的包括测定原子量、 同位素丰度、确定元素组成等。针对这些要求,需要采用的离子源主要包括电感耦合等离子体(ICP)、微波等离子体炬(MPT)和其他微波诱导等离子体(MIP)、电弧、火花、辉光放电等,几乎能够用于原子发射光谱的激发源都可用。 质谱的检测对象主要是有机物和生命活性物质,需要用到一些比较特殊(相对于AES 激发源)的电离源。这些电离源可分为 4 类,即电子轰击电离(EI)、化学电离(CI)、解吸电离(DI)、喷雾电离(SI),如下表所示。除 EI 外,每种电离源都能够同时得到大量的正离子和负离子,而且分子离子的种类跟离子化过程中的媒介(medium)或基体(matrix)有关。比如,CI 能够产生(M H) 、(M NH4) 、(M Ag) 、(M Cl)-等离子作为分子离子,也能够产生类似的碎片离子。......阅读全文
质谱分析技术的离子源的介绍
在早期的质谱研究中,涉及的样品一般为无机物,检测目的包括测定原子量、 同位素丰度、确定元素组成等。针对这些要求,需要采用的离子源主要包括电感耦合等离子体(ICP)、微波等离子体炬(MPT)和其他微波诱导等离子体(MIP)、电弧、火花、辉光放电等,几乎能够用于原子发射光谱的激发源都可用。 质谱的
关于质谱分析技术样品导入的介绍
色谱法是质谱中应用最多的样品间接引入法,这种进样系统的研究热点之一就是质谱和色谱之间的接口技术。GC的样品可通过毛细管直接导入到质谱的离子源。如果GC的载气流量较大,可在离子源前面加一级真空或者采用喷射式分离器来分流载气(如 He 等小分子气体)和富集待测物。LC-MS 常采用电喷雾技术从色谱流
质谱分析技术电离源的相关介绍
电离源产生的不同离子之间能够互相反应,使得电离的结果更加丰富而复杂。比如在EI的作用下能够产生大量的离子,内能较大的离子在与中性分子(如He)碰撞时能够自发裂解产生更多的碎片离子。这种离子-分子反应一般很难进行完全,往往在得到许多碎片离子的同时还保留着部分母体离子,不过,通过增加离子内能(如调节
质谱分析技术的应用
质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。 质谱仪种类繁多,不同仪器应用特点也不同,一
质谱分析技术的展望
生物质谱可提供快速、易解的多组分的分析方法,且具有灵敏度高、选择性强、准确性好等特点,其适用范围远远超过放射性免疫检测和化学检测范围,生物质谱在检验医学中主要可用于生物体内的组分序列分析、结构分析、分子量测定和各组分含量测定。 1.核酸检测的应用:核酸的分子生物学研究已经成为生命化学、分子生物
质谱分析技术简介
用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电荷分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转;即速度慢的离子依然偏转大,速度快的偏
质谱离子源的分类
1 电感耦合等离子体,离子化效率高,且能电离几乎所有离子2 热电离 (通过高温电热丝离子化),稳定,但效率低。3 二次离子 (使用一次离子束轰击样品,从而激发离子),对样品损伤小,效率低
质谱离子源的作用
离子源是使中性原子或分子电离,并从中引出离子束流的装置。它是 一种流强大产额高的离子源各种类型的离子加速器、质谱仪、电磁同位素分离器、离子注入机、离子束刻蚀装置、离子推进器以及受控聚变装置中的中性束注入器等设备的不可缺少的部件。 气体放电、电子束对气体原子(或分子)的碰撞,带电粒子束使工作物质溅
质谱离子源的作用
离子源是使中性原子或分子电离,并从中引出离子束流的装置。它是 一种流强大产额高的离子源各种类型的离子加速器、质谱仪、电磁同位素分离器、离子注入机、离子束刻蚀装置、离子推进器以及受控聚变装置中的中性束注入器等设备的不可缺少的部件。 气体放电、电子束对气体原子(或分子)的碰撞,带电粒子束使工作物质溅
液质联用的离子源
液质联用的离子源,最早来源于ESI的诞生。最早是由analytica公司做的,大约在80年代。后来各公司不断改进,形成了各个公司ZL的离子源。其中,有独立ZL技术的有:Finnigan、Waters、AB、安捷伦。Bruker和安捷伦是合作关系,它让安捷伦用自己的离子阱,它就用了安捷伦的离子源,是一
质谱分析技术快原子轰击的原理
一束高能粒子,如氩、氙原子,射向存在于液态基质中的样品分子而得到样品离子,这样可以得到提供分子量信息的准分子离子峰和提供化合物结构信息的碎片峰。快原子轰击操作方便、灵敏度高、能在较长时间里获得稳定离子流。当用于绝大多数生物体中寡糖及其衍生物的分析时,可测分子量达6000。而且在该质量范围内,其灵
质谱分析技术电喷雾电离的原理
喷雾器顶端施加一个电场给微滴提供净电荷;在高电场下,液滴表面产生高的电应力,使表面被破坏产生微滴;荷电微滴中溶剂的蒸发;微滴表面的离子“蒸发”到气相中,进入质谱仪。为了降低微滴的表面能,加热至200~250℃,可使喷雾效率提高。FAB-MS 可以显示碎片离子,但只能产生单电荷离子,因此不适用于分
关于质谱离子源的详述
1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有
液质联用中的质谱——离子源篇
质谱主要测定的是带电离子的质量,即质荷比(m/z)。质谱主要由几大部分构成:样品入口,离子源,质量分析器,检测器,数据系统,质量分析器和检测器(许多质谱的离子源)均在真空中,由真空泵来提供所需10-3-10-10 Torr的真空度。在液质联用中,样品入口即液相色谱的流出端接入离子源,在离子源和质
质谱分析技术的仪器微球板检测器的介绍
Tremsin 和 Naaman 等研制出基于微通道板检测原理的微球板检测器(MSP)。直径约为 20~100微米的玻璃微球经特殊材料处理后,烧结形成薄的、多孔玻璃板,这样在玻璃板两个表面之间就可形成不规则通道,离子撞击玻璃板表面产生二次电子被加在两表面间的高压加速,通过弯曲的通道时,再次撞击其
质谱分析技术原理与方法
质谱方法(Mass Spectroscope,MS)是通过正确测定蛋白质分子的质量而进行蛋白质分子鉴定、蛋白质分子的修饰和蛋白质分子相互作用的研究。质谱仪通过测定离子化生物分子的质荷比便可得到相关分子的质量。但长期以来,质谱方法仅限于小分子和中等分子的研究,因为要将质谱应用于生物大分子需要将之制
质谱常用离子源
无信号/荧光强度弱 不正确的信号补偿:检查流式细胞仪阳性单一颜色对照是否正确,通道和补偿设置是否能正确地捕获所有粒子;没有足够的抗体来检测:增加抗体的量/浓度;无法接近细胞内目标:检查目标蛋白是否在细胞内。 对于胞内染色,确保有足够的通透性。为防止细胞表面蛋白质的内化,该过程应用冰冷的试剂,
质谱常用离子源
最常用的离子源五种离子源为电子轰击源(EI)、化学电离源(CI)、电喷雾电离源(ESI)、大气压化学电离源(APCI)和基质辅助激光解吸电离源(MALDI)。目前我们所测试中心配备的主要是电子轰击源(EI)、电喷雾电离源(ESI)和大气压化学电离源(APCI)。那么我们配备的离子源的离子化原理及
质谱分析法的仪器介绍
质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类: 有机质谱仪:由于应用特点不同又分为: ①气相色谱-质谱联用仪(GC-MS) 在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱 -飞行时间质谱仪,气相色谱-离子阱质谱仪等。 ②
质谱分析法的应用介绍
质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片
DART实时直接分析质谱离子源介绍
实时直接分析(Direct Analysis in Real Time)简称DART,是一种热解析和离子化技术。 DART操作简单,样品置放于DART源出口和一台LC-MS质谱仪的离子采样口,便可进行分析。 适用于分析液、固、气态的各类型
液质联用仪离子源的种类
液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助
液质联用仪离子源的种类
液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助
常见的质谱离子源有哪些?
常见的质谱离子源E SI、APCI、MALDI。
液质联用仪离子源的种类
液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助
经验分享:质谱的离子源污染
随着时间的推移质离子源逐渐被未带电的残留物污染,这些污染物不能通过高速电磁场离开离子源,也不能进入真空系统。 离子源被污染形成的静电涂层会引起电压响应行为的改变,因此仪器的灵敏度会降低。尤其对于收集器板,被污染对从离子源出来的离子的加速能力会受损。离子源内污染也能吸收样品物质,也会导
质谱分析的过程
质谱分析的过程 :(1)进样,化合物通过汽化引入电离室;(2)离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子;(3)离子也可因撞击强烈而形成碎片离子;(4)荷正电离子被加速电压V加速,产生一定的速度v,与质量、电荷及加速电压有关;(5)加速正离子进入一个强度为B的磁场(质量分
关于质谱分析的其他使用仪器的介绍
Birkinshaw和Langstaff等人研制出由微通道板和阳极阵列组成的聚焦板检测体系。阳极阵列是基于芯片技术的互补型金属氧化物半导体器件,由 18 微米宽的铝检测带和相应电路组成,可用来检测微通道板产生的脉冲电流。与普通微通道板相比,信噪比、灵敏度、分辨率得到一定提高,而计数速率没有得到改
常见质谱分析器介绍
常见质谱分析器有四级杆分析器,飞行时间分析器 (TOF),傅立叶转换一离子回旋加速共振(FT—ICR)。
质谱分析
主要包括电感耦合等离子体质谱ICP-MS和飞行时间二次离子质谱法TOF-SIMS(1) 电感耦合等离子体质谱(inductively coupled plasma mass spectrometry, ICP-MS)ICP-MS是利用电感耦合等离子体作为离子源的一种元素质谱分析方法;该离子源产生的样