RNA干扰相关知识RISCloadingcomplex(RLC)

RISC loading complex(RLC):是一种促使RISC形成的复合物。RLC有方向性地调节小RNA双螺旋,为以后的RISC组装作好铺垫。siRISC loading complexes (siRLCs)在果蝇中研究最多。有研究者认为在果蝇中的siRLCs包含DCR2-R2D2异型二聚体和siRNA双螺旋;R2D2部分是非对称性的感受器,为RISC组装调整好siRNA的方向。miRISC loading complexes (miRLCs)的研究尚未报导,因为它的过程更为复杂,而且体外研究miRLCs的方法还没有建立。......阅读全文

RNA干扰相关知识RISC-loading-complex(RLC)

RISC loading complex(RLC):是一种促使RISC形成的复合物。RLC有方向性地调节小RNA双螺旋,为以后的RISC组装作好铺垫。siRISC loading complexes (siRLCs)在果蝇中研究最多。有研究者认为在果蝇中的siRLCs包含DCR2-R2D2异型二聚体

什么RISC-loading-complex(RLC)?

RISC loading complex(RLC):是一种促使RISC形成的复合物。RLC有方向性地调节小RNA双螺旋,为以后的RISC组装作好铺垫。siRISC loading complexes (siRLCs)在果蝇中研究最多。有研究者认为在果蝇中的siRLCs包含DCR2-R2D2异型二聚体

RISC-loading-complex(RLC)的结构和用途

RISC loading complex(RLC):是一种促使RISC形成的复合物。RLC有方向性地调节小RNA双螺旋,为以后的RISC组装作好铺垫。siRISC loading complexes (siRLCs)在果蝇中研究最多。有研究者认为在果蝇中的siRLCs包含DCR2-R2D2异型二聚体

RNA干扰相关知识RNARISC

RNA-induced silencing complex(RISC):一种RNA-蛋白质复合物,通过与目标mRNA完全或者部分的互补配对来实施切割或者翻译抑制功能。SiRNA组装siRISC,miRNA组装miRISC。RISCs(无论siRISC还是miRISC)包括两种类型:切割型和不切割型。

RNA干扰相关知识Holo-RISC

Holo RISC:是在果蝇中发现的有着RISC活性的最大的RNA-蛋白质复合物(80S)。Holo RISC的生物学活性牵涉到几乎所有的RISC的成员,RLC成员,和一些其他通路上的蛋白质分子。Holo RISC的存在,表明了RISC组装不是孤立的,同时还是一个有序的过程。以RISC为中心的RNA

RNA干扰相关知识Core-RISC

Core RISC:是介导目标mRNA切割过程或者翻译抑制的最小的RNA-蛋白质复合物。在人和果蝇身上发现的分子量少于200kDa的RISCs可能就是core RISC的重要代表。AGO蛋白质和Core RISC密切相关。

RNAinduced-silencing-complex(RISC)的功能和用途

RNA-induced silencing complex(RISC):一种RNA-蛋白质复合物,通过与目标mRNA完全或者部分的互补配对来实施切割或者翻译抑制功能。SiRNA组装siRISC,miRNA组装miRISC。RISCs(无论siRISC还是miRISC)包括两种类型:切割型和不切割型。

RNA干扰相关知识Microprocessor

Microprocessor:一种核内的复合物,主要由Drosha和Pasha两者组成,在miRNA的生物合成中促使原始的miRNA成为miRNA前体。

RNA干扰相关知识Slicer

Slicer:在切割型RISC中的内切酶的另外一种表述方法。

RNA干扰相关知识RNARITS)

RNA-induced initiation of transcriptional gene silencing(RITS):是一种组织染色质变型的复合物。RITS复合物也包含Dicer加工形成的siRNA和AGO蛋白质,通过结合到异染色质的基因池上来促使异染色质上基因的沉默。

RNA干扰相关知识Dicer(DCR)

Dicer(DCR):是RNAase Ⅲ家族中的一员,主要切割dsRNA或者茎环结构的RNA前体成为小RNAs分子。对应地,我们将这种小RNAs分子命名为siRNAs和miRNA。Dicer有着较多的结构域,最先在果蝇中发现,并且在不同的生物体上表现出很高的保守性。

RNA干扰相关知识Argonaute(AGO)

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

RNA干扰相关知识MicroRNA(miRNA)

MicroRNA(miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发

RNA干扰相关知识Small-interfering-RNA(siRNA)

Small interfering RNA(siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。

RNA干扰(RNA-interference,RNAi)基础知识(1)

Rnai最近由于RNA 干扰(RNA interference,RNA i)的发现使反义领域的研究增多。这种自然发生的现象最早是在秀丽线虫中发现的(1),是序列特异性地使转录后的基因沉默的有力机制。由于最近两年在 RNA i领域取得的进步,已经有许多这方面的综述发表(2-4)。RNA 干扰是

RNA干扰(RNA-interference,RNAi)基础知识(3)

SiRNASmall interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。ShRNAshRNA 短发夹RNAshRNA

RNA干扰(RNA-interference,RNAi)基础知识(2)

1RNA i的发现RNA i是在研究秀丽新小杆线虫(C. elegans)反义RNA (antisenseRNA )的过程中发现的,由dsRNA 介导的同源RNA 降解过程。1995年,Guo等发现注射正义RNA (senseRNA )和反义RNA 均能有效并特异性地抑制秀丽新小杆线虫par

RNA干扰主体实验的相关介绍

  siRNA表达载体构建好后,即可进行RNA干扰主体实验。  RNA干扰主体实验的重点在于:  成功将siRNA表达载体导入目的细胞  如果目的细胞的质粒转染效率较低(低于70%),则应采用腺病毒或慢病毒载体,利用病毒载体的高感染率、高表达特性,更好地开展RNA干扰主体实验。  设置好分组和对照 

Holo-RISC的概念

Holo RISC:是在果蝇中发现的有着RISC活性的最大的RNA-蛋白质复合物(80S)。Holo RISC的生物学活性牵涉到几乎所有的RISC的成员,RLC成员,和一些其他通路上的蛋白质分子。Holo RISC的存在,表明了RISC组装不是孤立的,同时还是一个有序的过程。以RISC为中心的RNA

Holo-RISC的概念和用途

Holo RISC:是在果蝇中发现的有着RISC活性的最大的RNA-蛋白质复合物(80S)。Holo RISC的生物学活性牵涉到几乎所有的RISC的成员,RLC成员,和一些其他通路上的蛋白质分子。Holo RISC的存在,表明了RISC组装不是孤立的,同时还是一个有序的过程。以RISC为中心的RNA

浙大:RNA编辑阻止RISC识别靶标mRNA

  MicroRNAs(miRNAs)结合Ago形成RNA诱导沉默复合体,通过沉默靶mRNA调控基因表达。miRNA的RNA编辑可能影响miRNA的加工,Ago复合物的组装,以及靶mRNA的结合。然而,组装进Ago复合物的被编辑的miRNA的功能,还没有被深入研究过。  浙江大学生命科学学院章晓波教

RNAi及基因沉默原理

RNA 干扰(RNAinterference,RNAi)是由双链RNA (double-strandedRNA,dsRNA) 引发的转录后基因静默机制。其原理是:RNaseIII 核酶家族的Dicer,与双链RNA 结合,将其剪切成21 - 25nt 及3'端突出的小干扰RNA (small

RNA干扰的体外转录的相关介绍

  以DNA Oligo为模版,通过体外转录合成siRNAs,成本相对化学合成法而言比较低,而且能够比化学合成法更快的得到siRNAs。不足之处是实验的规模受到限制,虽然一次体外转录合成能提供足够做数百次转染的siRNAs,但是反应规模和量始终有一定的限制。而且和化学合成相比,还是需要占用研究人员相

类病毒的危害病理

类病毒会引起植物基因序列的甲基化,引起转录的失败。并且更多的证据表明其能诱导RNA沉默。有证据表明,当类病毒环状RNA在复制形成双链中间体的时候,会被类似于核糖核酸酶Ⅲ的Dicer 酶切割成大小约为21~23bp的双链小干扰RNA(small- interfring RNA,siRNA),并与其他因

类病毒的危害病理

类病毒会引起植物基因序列的甲基化,引起转录的失败。并且更多的证据表明其能诱导RNA沉默。有证据表明,当类病毒环状RNA在复制形成双链中间体的时候,会被类似于核糖核酸酶Ⅲ的Dicer 酶切割成大小约为21~23bp的双链小干扰RNA(small- interfring RNA,siRNA),并与其他因

RNA干扰技术(RNA-interference,RNAi)

1995年,康乃尔大学的Su Guo博士在试图阻断秀丽新小杆线虫(C. elegans)中的par-1基因时,发现了一个意想不到的现象。她们本是利用反义RNA技术特异性地阻断上述基因的表达,而同时在对照实验中给线虫注射正义RNA(sense RNA)以期观察到基因表达的增强。但得到的结果

RNAi的分子机制

通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs, siRNAs)。证据表明;一个称为Dicer的酶

RNAi(RNA干扰)的分子机制

通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs, siRNAs)。证据表明;一个称为Dic

Proteasome-Complex

Attachment of the ubiquitin peptide to proteins targets them for proteolytic degradation by a complex cellular structure, the proteasome. The regulate

RNA干扰的简介

  RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。