RNA生物合成的抑制剂相关介绍
一、碱基类似物 有些人工合成的碱基类似物能干扰和抑制核酸的合成。作用方式有以下两类: (一)作为代谢拮抗物,直接抑制核苷酸生物合成有关酶类。如6-巯基嘌呤进入体内后可转变为巯基嘌呤核苷酸,抑制嘌呤核苷酸的合成。可作为抗癌药物,治疗急性白血病等。此类物质一般需转变为相应的核苷酸才能表现出抑制作用。 (二)进入核酸分子,形成异常RNA或DNA,影响核酸的功能并导致突变。5-氟尿嘧啶类似尿嘧啶,可进入RNA,与腺嘌呤配对或异构成烯醇式与鸟嘌呤配对,使A-T对转变为G-C对。因为正常细胞可将其分解,而癌细胞不能,所以可选择性抑制癌细胞生长。 二、DNA模板功能抑制物 (一)烷化剂:带有活性烷基,能使DNA烷基化。鸟嘌呤烷化后易脱落,双功能烷化剂可造成双链交联,磷酸基烷化可导致DNA链断裂。通常有较大毒性,引起突变或致癌。 (二)放线菌素类:可与DNA形成非共价复合物,抑制其模板功能。包括一些抗癌抗生素。 (三)嵌入染料......阅读全文
RNA生物合成的抑制剂相关介绍
一、碱基类似物 有些人工合成的碱基类似物能干扰和抑制核酸的合成。作用方式有以下两类: (一)作为代谢拮抗物,直接抑制核苷酸生物合成有关酶类。如6-巯基嘌呤进入体内后可转变为巯基嘌呤核苷酸,抑制嘌呤核苷酸的合成。可作为抗癌药物,治疗急性白血病等。此类物质一般需转变为相应的核苷酸才能表现出抑制作
信使RNA的原核生物的相关介绍
一、核糖体RNA:大肠杆菌共有7个核糖体RNA的转录单位,每个转录单位由16S、23S、5SRNA和若干转运RNA基因组成。16S和23S之间常由转运RNA隔开。转录产物在RNA酶III的作用下裂解产生核糖体RNA的前体P16和P23,再由相应成熟酶加工切除附加序列。前体加工时还进行甲基化,产生
信使RNA的真核生物的相关介绍
一、核糖体RNA:基因拷贝数多,在几十到几千之间。基因成簇排列在一起,由RNA聚合酶I转录生成一个较长的前体,哺乳动物为45S。核仁是rRNA合成与核糖体亚基生物合成的场所。RNA酶III等核酸内切酶在加工中起重要作用。5SRNA基因也是成簇排列的,由RNA聚合酶III转录,经加工参与构成大亚基
蛋白质生物合成的抑制剂
蛋白质生物合成的抑制剂 许多蛋白质生物合成抑制剂具有高度专一性,这对于研究合成机制很重要。许多临床有效的抗生素是通过特异抑制原核生物的蛋白质合成而发挥作用的,它们抑制细菌生长而不损害人体细胞。利用两类生物蛋白质合成的差异,可以找出治疗细菌感染引起的疾病的药物。表中列出一些较为重要的蛋白质生物合成抑制
蛋白质生物合成的抑制剂
蛋白质生物合成的抑制剂 许多蛋白质生物合成抑制剂具有高度专一性,这对于研究合成机制很重要。许多临床有效的抗生素是通过特异抑制原核生物的蛋白质合成而发挥作用的,它们抑制细菌生长而不损害人体细胞。利用两类生物蛋白质合成的差异,可以找出治疗细菌感染引起的疾病的药物。表中列出一些较为重要的蛋白质生物合成抑制
DNA合成抑制剂的功能介绍
硫唑嘌呤( azathioprine,AZA)1960年人们发现6-巯基嘌呤能延缓皮肤移植的排斥反应。在随后的几年中,人们陆续发现硫唑嘌呤能延缓器官移植排斥,包括人肾移植排斥反应。AZA代谢成活性产物6-巯基嘌呤能抑制嘌呤生物合成而抑制DNA、RNA以及蛋白合成,抑制淋巴细胞增殖反应。AZA因其非选
蛋白质的生物合成的过程相关介绍
蛋白质在生物体内常处于合成和分解的动态平衡。因而各种蛋白质都以其固有的速度进行分解或重新合成。在细胞内合成蛋白质的场所是核蛋白体。核蛋白体在细胞内以游离的或结合在粗面内质网上的状态而存在,前者主要进行细胞质(酶)的合成,后者主要是以分泌蛋白质(酶)及膜组成成分的蛋白质的合成。蛋白质的一级结构,即
转运RNA的合成方法介绍
生物合成:在生物体内,DNA分子上的tRNA基因经过转录生成tRNA前体,然后被加工成成熟的tRNA: tRNA前体的加工包括:切除前体分子中两端或内部的多余核苷酸;形成tRNA成熟分子所具有的修饰核苷酸;如果前体分子3′端缺乏CCA顺序,则需补加上CCA末端。加工过程都是在酶催化下进行的。
关于RNA干扰的化学合成介绍
许多国外公司都可以根据用户要求提供高质量的化学合成siRNA。主要的缺点包括价格高,定制周期长,特别是有特殊需求的。由于价格比其他方法高,为一个基因合成3—4对siRNAs 的成本就更高了,比较常见的做法是用其他方法筛选出最有效的序列再进行化学合成。 最适用于:已经找到最有效的siRNA的情况
关于转运RNA的合成方法介绍
生物合成:在生物体内,DNA分子上的tRNA基因经过转录生成tRNA前体,然后被加工成成熟的tRNA: tRNA前体的加工包括:切除前体分子中两端或内部的多余核苷酸;形成tRNA成熟分子所具有的修饰核苷酸;如果前体分子3′端缺乏CCA顺序,则需补加上CCA末端。加工过程都是在酶催化下进行的。
RNA复制酶的相关介绍
即“RNA依赖的RNA聚合酶(RdRp)”RNA聚合酶的一种,存在于大部分RNA病毒中。和细胞中用来转录的RNA聚合酶(DdRp)不同,RNA复制酶的模板是RNA分子。 某些RNA复制酶还有解旋酶活性,正链RNA或双链RNA病毒复制时都会产生双链RNA,RNA复制酶可以解开这些双链,保证RNA
DNA合成仪的合成柱的相关介绍
起始结合在载体(一般为CPG)上的核苷酸是装在一次性的柱子中,除柱体外,还有2个固定过滤板和2个接头,所有的部件都由惰性材料制成。固定过滤板是多孑L性聚苯乙烯固定在两端盖子中。入口和出口都是母路厄氏(1uer)接头,与仪器的公路厄氏接头配对。柱子是对称的(没有顶端和底部、前后之分),可以以任何方
关于反义RNA的人工合成的介绍
既然反义RNA在原核生物中对基因表达起着重要的调控作用,那么人工设计在天然状态下不存在的反义RNA来调节靶基因的表达,想必也是可能的。这已在不少实验中得到证实。 1.由于对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计Ⅱ类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该
反义RNA的人工合成过程介绍
既然反义RNA在原核生物中对基因表达起着重要的调控作用,那么人工设计在天然状态下不存在的反义RNA来调节靶基因的表达,想必也是可能的。这已在不少实验中得到证实。1.由于对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计Ⅱ类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该mRNA
转运RNA的结构特征相关介绍
tRNA的结构特征之一是含有较多的修饰成分,如上面提到的 D、T、 Ψ等;核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。 1974年用X射线晶体衍射法测出第一个tRNA——酵母苯丙氨酸tRNA晶体的三维结构,分子全貌象倒写的英文字母L,呈扁
RNA干扰主体实验的相关介绍
siRNA表达载体构建好后,即可进行RNA干扰主体实验。 RNA干扰主体实验的重点在于: 成功将siRNA表达载体导入目的细胞 如果目的细胞的质粒转染效率较低(低于70%),则应采用腺病毒或慢病毒载体,利用病毒载体的高感染率、高表达特性,更好地开展RNA干扰主体实验。 设置好分组和对照
信使RNA的结构功能相关介绍
原核生物mRNA一般5′端有一段不翻译区,称前导区,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成。分子中除m7G构成帽子外,常含有其他修饰核苷酸,如m6
RNA-大量转录合成
实验材料 模板 DNA 或质粒试剂、试剂盒 TE TE 饱和酚 氯仿异内醇 3mol LNaAc 无水乙醇 5X 转录缓冲液 lOOmmoL LDTT RNasin rATPrGTPrUTPrCTP SF6T3 或 T7RNA 聚合酶 异戊醇 DNase 7.5mol L 乙酸铵 无水乙醇 乙醇实验
RNA-大量转录合成
实验材料 模板 DNA 或质粒 试剂、试剂盒 TE TE 饱和酚 氯仿
DNA合成抑制剂硫唑嘌呤功能介绍
DNA合成抑制剂硫唑嘌呤( azathioprine,AZA)1960年人们发现6-巯基嘌呤能延缓皮肤移植的排斥反应。在随后的几年中,人们陆续发现硫唑嘌呤能延缓器官移植排斥,包括人肾移植排斥反应。AZA代谢成活性产物6-巯基嘌呤能抑制嘌呤生物合成而抑制DNA、RNA以及蛋白合成,抑制淋巴细胞增殖反应
我国科学家解析小RNA的生物合成机制
小RNA是真核生物中重要的基因调控分子,在生长发育、基因沉默、抵御病毒等动植物的各类生理过程中起着至关重要的作用。小RNA的生物合成中,Dicer家族核酸内切酶选择性识别小RNA前体,切割RNA至特定长度,并选择性地将一条链递呈给下游AGO蛋白从而介导下游基因沉默。Dicer如何起到“分子尺”和
我国科学家解析小RNA的生物合成机制
小RNA是真核生物中重要的基因调控分子,在生长发育、基因沉默、抵御病毒等动植物的各类生理过程中起着至关重要的作用。小RNA的生物合成中,Dicer家族核酸内切酶选择性识别小RNA前体,切割RNA至特定长度,并选择性地将一条链递呈给下游AGO蛋白从而介导下游基因沉默。Dicer如何起到“分子尺”和
神经氨酸酶抑制剂的相关介绍
神经氨酸酶是流感治疗药物的作用靶点之一,自从人类了解该酶的作用之后,便开始了针对该酶抑制剂的研究,已经有两种神经氨酸酶抑制剂上市,一种进入三期临床研究。 在研的神经氨酸酶抑制剂根据结构可以分为唾液酸类似物、苯甲酸衍生物、环己烯衍生物、环戊烷衍生物、吡咯烷衍生物以及天然提取物六大类。这四大类
β内酰胺酶抑制剂的相关介绍
1、克拉维酸(clavulanic acid,棒酸) 为氧青霉烷类广谱β-内酰胺酶抑制剂,抗菌谱广,但抗菌活性低。与多种β-内酰胺类抗菌素合用时,抗菌作用明显增强。临床使用奥格门汀(augmentin,氨菌灵)与泰门汀(timentin),为克拉维酸分别和阿莫西林与替卡西林配伍的制剂。 2、
蛋白酶抑制剂的相关介绍
蛋白酶抑制剂(protease inhibitor)从广义上指与蛋白酶分子活性中心上的一些基团结合,使蛋白酶活力下降,甚至消失,但不使酶蛋白变性的物质。从放线菌发酵液中分离到亮肽素、抗痛素、糜蛋白酶抑素、抑弹性蛋白酶醛、抑胃蛋白酶素、磷酰胺素等,能分别抑制胰蛋白酶、木瓜蛋白酶、糜蛋白酶、弹性蛋白
RNA探针合成方法和合成效率检测方法介绍
相关专题制备RNA探针在RNA的杂交检测实验中,应用标记的RNA 探针将获得高灵敏度的杂交检测结果,与DNA 探针相比,检测灵敏度提高10-100倍。因为对于不同的杂交体类型来说,RNA-RNA杂交体的结合强度高于RNA-DNA和DNA-DNA杂交体。对于通过Northern blots检测低浓度m
关于生物合成的分类介绍
光合作用:光合作用(photosynthensis)是生物界中规模最大的有机合成过程,通过光合作用使太阳能转变为化学能储存于碳水化合物中,每年约为8×10博kJ。放出的氧气约5.35×1011t,同化的碳素约2×1011t。 糖异生::糖异生(gluconeogenesis)作用是由非糖前体如
关于多肽的生物合成介绍
同时,游离在细胞质中的转运RNA(tRNA)把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸(amino acid),这样,在合成开始时,总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫
关于倍半萜的生物合成介绍
在生物体内,萜类化合物是由乙酰辅酶A转化而来的。首先乙酰辅酶A和二氧化碳结合转化为丙二酰辅酶A,后者再和一分子的乙酰辅酶A形成乙酰乙酰辅酶A,这个中间体再和一分子乙酰辅酶A进行羟醛缩合反应,就得到一个六碳中间体,然后还原水解,产生萜的生物合成前体,3-甲基-3,5-二羟基戊酸。经过腺苷三磷酸(A
简述多肽的生物合成介绍
同时,游离在细胞质中的转运RNA(tRNA)把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸(amino acid),这样,在合成开始时,总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫