丙烯酰胺对神经递质的改变与抑制

AM也可能通过改变神经递质水平和功能导致神经毒性,如阻碍神经末梢的膜融合过程。 N-乙基顺丁烯二酰亚胺敏感性的融合蛋白(N-ethylmaleimide sensitive factor,NSF)是参与神经递质释放的一种ATP酶。 研究表明NSF可能是A的靶位点,在神经递质传递过程中AM与NSF蛋白264位甲硫氨酸位点(NSF Cys264)形成加合物来抑制突触小体对神经递质的释放, 阻碍神经末梢膜融合,最终导致神经末梢变性;同时,AM 还会导致纹状体多巴胺的含量显著降低, 突触囊泡对多巴胺的摄取能力减弱,导致神经递质的存储障碍,进而也会引发递质的释放障碍。 在所抑制神经递质中,有研究指出:AM会导致大鼠大脑皮层和小脑内兴奋性神经递质谷氨酸(glutamic acid,Glu)降低,而抑制性神经递质γ-氨基丁酸(γ-aminobutyric acid,GABA)未发生变化。Glu是脑区最重要且常见的兴奋性神经递质,在学习......阅读全文

丙烯酰胺对神经递质的改变与抑制

  AM也可能通过改变神经递质水平和功能导致神经毒性,如阻碍神经末梢的膜融合过程。 N-乙基顺丁烯二酰亚胺敏感性的融合蛋白(N-ethylmaleimide sensitive factor,NSF)是参与神经递质释放的一种ATP酶。  研究表明NSF可能是A的靶位点,在神经递质传递过程中AM与NS

丙烯酰胺对神经递质的改变与抑制的影响

  AM也可能通过改变神经递质水平和功能导致神经毒性,如阻碍神经末梢的膜融合过程。 N-乙基顺丁烯二酰亚胺敏感性的融合蛋白(N-ethylmaleimide sensitive factor,NSF)是参与神经递质释放的一种ATP酶。 [2]  研究表明NSF可能是A的靶位点,在神经递质传递过程中A

关于丙烯酰胺的抑制方法的介绍

  国内外对如何抑制食品中丙烯酰胺的生成做过大量研究,主要方向集中在食品的加工工艺以及抑制剂的选择上。   原料的预处理  试验得出,制作油炸薯条时,原料马铃薯应避免低于10℃保存。在温度较低时,马铃薯中的部分淀粉会转化成还原糖,经油炸加工后,丙烯酰胺的含量明显上升。将马铃薯切片后在60℃温水中浸泡

抑制食品中丙烯酰胺检测的方法

  丙烯酰胺(CAS号79-06-1)为无色透明片状晶体,无臭,有毒。其相对密度1.122,熔点为84~85℃。溶于水、乙醇,微溶于苯、甲苯。极易升华,易聚合。固体在室温下稳定,在熔融时,可猛烈聚合。  国内外对如何抑制食品中丙烯酰胺的生成做过大量研究,主要方向集中在食品的加工工艺以及抑制剂的选择上

怀孕对母亲大脑的改变

  研究人员发现,怀孕似乎能够导致大脑结构的长期改变,这种转变可以促进一个母亲具备照顾新生儿的能力。  这项基于大脑扫描的研究发现,怀孕女性大脑中特定区域中的灰质体积减少,这种转变会持续至少2年的时间。  荷兰莱顿大学的研究人员Elseline Hoekzema说:“这种变化具有显著的一致性,所以用

正确选择谷物可以抑制丙烯酰胺形成

根据霍恩海姆大学最近的一项研究,合适的谷物和制粉工业的选择对小麦烘焙食品中可预期的丙烯酰胺含量有很大影响。 丙烯酰胺被认为是一种潜在致癌物质,由含淀粉食物中的强热产生 - 包括烤面包和其他糕点。根据斯图加特霍恩海姆大学和Im Hoppenlau商学院最近的一项研究,通过仔细选择谷物和在工厂中

神经递质与焦虑动物模型

【摘要】 本文对焦虑相关神经递质(氨基酸类,单胺类,神经肽类)研究以及焦虑动物模型(如高架十字迷路,明暗箱,冲突模型等)研究进行综述,为进行抗焦虑药物及机制研究提供参考。【关键词】 焦虑;神经递质;模型,动物常用的焦虑动物模型分为两类,一类基于自发反应,如探究性试验(明暗箱等) ,反应了不可控应激导

束缚应激所致小鼠脑区的神经递质和行为改变及运动干...

束缚应激所致小鼠脑区的神经递质和行为改变及运动干预效果摘要:为了探讨束缚应激对小鼠神经递质、行为的影响及有氧运动的干预效果。选用 1 月龄 C57BL/6 小鼠 80 只,随机分为 4 组:控制组(Control,n=20 只)、束缚应激组(Stress,n=20 只)、运动组(Ex,n=20

丙烯酰胺对氧化损伤与神经细胞凋亡调控的影响

  研究表明,活性氧族(reactive oxygen species,ROS)对细胞膜脂质、蛋白质和DNA不断攻击并造成相应靶分子累积氧化变性或损伤,是造成细胞代谢紊乱和功能异常的重要生理基础。当体内自由基和活性氧的产生与消除间不平衡时会产生氧化应激,从而引发许多疾病。中枢神经系统(central

JBC:破解VMAT2抑制剂影响神经递质贮存的机制

  大脑中神经递质不平衡事导致许多脑部疾病和神经系统疾病的一个条件,尽管抑制神经递质不平衡的药物已经被开发出来,但是这些药物的作用机制尚未得到充分的解释。   目前,耶路撒冷希伯来大学的研究人员,利用面包酵母作为模型,已经破解了这些抑制剂影响神经传递过程甚至能够控制该过程的方式。   这项研究成

脑神经递质与精神活动的相关介绍

  脑内的神经递质的传递最为复杂,大约有上百种的中枢神经递质参与人的精神活动。根据分子质量,大致可将神经递质分为两大类:一类为小分子,如单胺类;另一类为大分子,如内源性阿片肽、P物质等。研究较多的与精神异常关系最为密切的神经递质假说有以下数种: [4]  1.兴奋性神经递质如谷氨酸。 [4]  2.

关于脑神经递质的神经递质的包装介绍

  合成好的神经递质要包装到囊泡中贮存,以待释放。不同的递质包装到不同的囊泡,它们在形态上能很容易区分。小分子递质如乙酰胆碱和氨基酸,被包装到直径为40~60nm的小囊泡中,位于囊泡膜上的递质转运体主动把胞质内合成好的小分子递质泵入囊泡内贮存。小囊泡电子密度低,在电镜下中心明亮,故称为中心明亮的小囊

丙烯酰胺对血脑屏障功能损害

  血脑脊液屏障(blood-cerebrospinal fluid barrier)主要由脉络丛(choroidplexus)上皮细胞之间的紧密连接构成,负责血液和脑脊液之间的物质转运。完整的血脑脊液屏障是保证中枢神经系统内环境稳定的重要条件。有学者发现鼠腹腔注射AM后脑脊液中甲状腺水平下降,瘦素

神经递质的概念

神经递质是由神经末梢释放出来的小分子物质,是神经元与靶细胞之间的化学信使。由于神经递质是神经细胞分泌的,所以这种信号又称为神经信号(neuronal signaling)。

神经递质的分类

脑内神经递质分为四类,即生物原胺类、氨基酸类、肽类、其它类。生物原胺类神经递质是最先发现的一类,包括:多巴胺(DA)、去甲肾上腺素(NE)、肾上腺素(E)、5-羟色胺。氨基酸类神经递质包括:γ-氨基丁酸(GABA)、甘氨酸、谷氨酸、组胺、乙酰胆碱(Ach)。肽类神经递质分为:内源性阿片肽、P物质、神

灵芝对小鼠学习记忆和单胺类神经递质的影响

摘要: 目的: 观察灵芝对小鼠智力的影响。方法: 灵芝水煎剂以每100g体重1m l(低剂量组为5gökg,高剂量组为10gökg)连续灌胃2周, 测定学习记忆和单胺类神经递质。结果: 与对照组相比, 灵芝能显著提高小鼠大脑52羟色胺和多巴胺的含量(P

温度对聚丙烯酰胺粘度的影响

温度是分子无规则热运动激烈程度的反映,分子的运动必须克服分子间的相互作用力,而分子间的相互作用,如分子间氢键、内摩擦、扩散、分子链取向、缠结等,直接影响粘度的大小,故高聚物溶液的粘度会随温度发生变化。温度改变对高聚物溶液粘度的影响是显著的。聚丙烯酰胺溶液的粘度随温度的升高而降低,其原因是高分子溶液的

矿化度对聚丙烯酰胺粘度的影响

矿化度对聚丙烯酰胺粘度的影响聚丙烯酰胺分子链中阳离子基团相对于阴离子基团数目较多,净电荷较多,极性较大,而H2O是极性分子,根据相似相溶原理,聚合物水溶性较好,特性黏度较大;随着矿物质含量的增加,正的静电荷部分被阴离子包围形成离子氛,从而与周围正的静电荷结合,聚合物溶液极性减小,黏度减小;矿物质浓度

关于核糖体结合位点的异常改变抑制介绍

  电镜下,多聚核糖体的解聚和粗面内质网的脱粒都可看作是蛋白质合成降低或停止的一个形态指标。  多聚核糖体的解聚:是指多聚核糖体分散为单体,失去正常有规律排列,孤立地分散在胞质中或附在粗面内质网膜上。一般认为,游离多聚核糖体的解聚将伴随着内源性蛋白质生成的减少。脱粒是指粗面内质网上的核糖体脱落下来,

神经递质的主要种类

按照神经递质的生理功能,可把神经递质分为兴奋性递质和抑制性递质,但也不尽然,有时同一物质既可以是兴奋性也可以是抑制性递质,如5-HT作用于不同受体,作用就不同。按照神经递质的分布部位,可分为中枢神经递质和周围神经递质,同样也不是绝对的,几乎所有的外周递质均在中枢存在。按照神经递质的化学性质,可分为胆

简述温度对聚丙烯酰胺粘度的影响

  温度是分子无规则热运动激烈程度的反映,分子的运动必须克服分子间的相互作用力,而分子间的相互作用,如分子间氢键、内摩擦、扩散、分子链取向、缠结等,直接影响粘度的大小,故高聚物溶液的粘度会随温度发生变化。温度改变对高聚物溶液粘度的影响是显著的。聚丙烯酰胺溶液的粘度随温度的升高而降低,其原因是高分子溶

水解时间对聚丙烯酰胺粘度的影响

水解时间对聚丙烯酰胺粘度的影响聚丙烯酰胺溶液粘度随水解时间的延长而改变,水解时间短,粘度较小,这可能是由于高聚物还来不及形成网状结构所致;水解时间过长,粘度下降,这是聚丙烯酰胺在溶液中结构发生松解所致。部分水解聚丙烯酰胺溶于水后离解成带负电荷的大分子,分子间静电排斥作用以及同一分子上不同链节之间的阴

关于丙烯酰胺对血脑屏障功能损害的介绍

  血脑脊液屏障(blood-cerebrospinal fluid barrier)主要由脉络丛(choroidplexus)上皮细胞之间的紧密连接构成,负责血液和脑脊液之间的物质转运。完整的血脑脊液屏障是保证中枢神经系统内环境稳定的重要条件。有学者发现鼠腹腔注射AM后脑脊液中甲状腺水平下降,瘦素

简述温度对聚丙烯酰胺粘度的影响

  温度是分子无规则热运动激烈程度的反映,分子的运动必须克服分子间的相互作用力,而分子间的相互作用,如分子间氢键、内摩擦、扩散、分子链取向、缠结等,直接影响粘度的大小,故高聚物溶液的粘度会随温度发生变化。温度改变对高聚物溶液粘度的影响是显著的。聚丙烯酰胺溶液的粘度随温度的升高而降低,其原因是高分子溶

概述矿化度对聚丙烯酰胺粘度的影响

  聚丙烯酰胺分子链中阳离子基团相对于阴离子基团数目较多,净电荷较多,极性较大,而H2O是极性分子,根据相似相溶原理,聚合物水溶性较好,特性黏度较大;随着矿物质含量的增加,正的静电荷部分被阴离子包围形成离子氛,从而与周围正的静电荷结合,聚合物溶液极性减小,黏度减小;矿物质浓度继续增加,正、负离子基团

简述水解时间对聚丙烯酰胺的影响

  聚丙烯酰胺溶液粘度随水解时间的延长而改变,水解时间短,粘度较小,这可能是由于高聚物还来不及形成网状结构所致;水解时间过长,粘度下降,这是聚丙烯酰胺在溶液中结构发生松解所致。部分水解聚丙烯酰胺溶于水后离解成带负电荷的大分子,分子间静电排斥作用以及同一分子上不同链节之间的阴离子排斥力导致分子在溶液中

关于温度对聚丙烯酰胺的影响介绍

  温度是分子无规则热运动激烈程度的反映,分子的运动必须克服分子间的相互作用力,而分子间的相互作用,如分子间氢键、内摩擦、扩散、分子链取向、缠结等,直接影响粘度的大小,故高聚物溶液的粘度会随温度发生变化。温度改变对高聚物溶液粘度的影响是显著的。聚丙烯酰胺溶液的粘度随温度的升高而降低,其原因是高分子溶

关于矿化度对聚丙烯酰胺粘度的影响

  聚丙烯酰胺分子链中阳离子基团相对于阴离子基团数目较多,净电荷较多,极性较大,而H2O是极性分子,根据相似相溶原理,聚合物水溶性较好,特性黏度较大;随着矿物质含量的增加,正的静电荷部分被阴离子包围形成离子氛,从而与周围正的静电荷结合,聚合物溶液极性减小,黏度减小;矿物质浓度继续增加,正、负离子基团

抑制剂对酶作用的影响

使酶的必需基团或活性部位中的基团的化学性质改变而降低酶活力甚至使酶失活的物质,称为抑制剂。(1)不可逆抑制作用:抑制剂与酶的结合(共价键)是不可逆反应,抑制剂与酶结合后不能用透析等方法除去抑制剂而恢复酶活性。如二异丙基氟磷酸对胰凝乳蛋白酶或乙酰胆碱酯酶;碘乙酸、碘乙酰胺、对一氯汞苯甲酸对巯基酶。(2

Nature:大脑神经递质转运体VMAT2的转运及药物抑制分子机制

  12月12日,中国科学院物理研究所、北京凝聚态物理国家研究中心姜道华团队,联合生物物理研究所赵岩团队,运用冷冻电镜单颗粒技术重构出囊泡单胺转运蛋白VMAT2处于不同构象的高分辨率结构,揭示了VMAT2在运输单胺底物过程中的构象变化及转运机制。相关研究成果以《人源VMAT2的转运及抑制机制》为题,