草酰乙酸的基本信息

中文名草酰乙酸外文名Oxaloacetic acid化学式C4H4O5分子量132.07CAS登录号328-42-7熔 点161 ℃沸 点341.93 ℃水溶性可溶密 度1.657 g/cm³闪 点174.79 ℃安全性描述S26:;S36/37/39:;S45:危险性符号C:Corrosive危险性描述R34:简 称OAA......阅读全文

草酰乙酸的基本信息

中文名草酰乙酸外文名Oxaloacetic acid化学式C4H4O5分子量132.07CAS登录号328-42-7熔    点161 ℃沸    点341.93 ℃水溶性可溶密    度1.657 g/cm³闪    点174.79 ℃安全性描述S26:;S36/37/39:;S45:危险性符号C

草酰乙酸的基本信息介绍

  草酰乙酸是一种有机物,化学式为C4H4O5。别名2-羰基丁二酸。它是三羧酸循环的一个重要环节, [1] 是由苹果酸脱氢酶的催化下由苹果酸生成的,它与乙酰辅酶A缩合生成柠檬酸,开始新的循环。

草酰乙酸参与的反应介绍

草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。作为α-酮酸,其酮基碳可受亲核进攻,例如:草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;作为β-酮酸,草酰乙酸稳定性不强,易脱羧。例子

关于草酰乙酸的参与反应介绍

  草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。  作为α-酮酸,其酮基碳可受亲核进攻,例如:  草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;  草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;  作为β-酮酸,草酰乙酸稳定

简述草酰乙酸的化学性质

  分子结构:  熔点 :161℃ 水溶性 :可溶  产品用途  可用作聚烯烃、PVC塑料的爽滑剂、抗静电剂、脱模剂,颜料、染料等分散剂,印刷油墨的添加剂  在丙酮酸羧化酶的作用下,由丙酮酸与CO2生成,另外,也可在转氨酶(EC 2.6.1.1)的作用下由天冬氨酸生成。已知也可作为琥珀酸脱氢酶的抑制

草酰乙酸的化学性状及用途

分子结构:熔点 :161℃ 水溶性 :可溶产品用途可用作聚烯烃、PVC塑料的爽滑剂、抗静电剂、脱模剂,颜料、染料等分散剂,印刷油墨的添加剂在丙酮酸羧化酶的作用下,由丙酮酸与CO2生成,另外,也可在转氨酶(EC 2.6.1.1)的作用下由天冬氨酸生成。已知也可作为琥珀酸脱氢酶的抑制剂。OAA和MA对菠

糖异生反应过程

糖异生反应过程:糖异生反应过程基本上是糖酵解反应的逆过程。由于糖酵解过程中由己糖激酶、6-磷酸果糖激酶1及丙酮酸激酶催化的三个反应释放了大量的能量,构成难以逆行的能障, 因此这三个反应是不可逆的。这三个反应可以分别通过相应的、特殊的酶催化,使反应逆行(图6-19),完成糖异生反应过程。(一)丙酮酸转

糖异生反应过程

糖异生反应过程: 糖异生反应过程基本上是糖酵解反应的逆过程。由于糖酵解过程中由己糖激酶、6-磷酸果糖激酶1及丙酮酸激酶催化的三个反应释放了大量的能量,构成难以逆行的能障, 因此这三个反应是不可逆的。这三个反应可以分别通过相应的、特殊的酶催化,使反应逆行(图6-19),完成糖异生反应过程。 (一)

苹果酸天冬氨酸穿梭的作用

主要存在肝和心肌中。1摩尔G→32摩尔ATP胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后

苹果酸天冬氨酸穿梭作用

主要存在肝和心肌中。1摩尔G→32摩尔ATP胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后

关于回补反应的基本信息介绍

  回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸经丙酮酸羧化酶催化,生成草酰乙酸的反应。  某一代谢系统所必需,且继续为该代谢系统以外的系统消耗进行补充的物质反应。例如为了三羧酸循环协调运行,必须经常接受乙酰辅酶A的草酰乙酸。但是这

羧化酶的基本信息

羧化酶存在于酵母、细菌、植物和动物组织中。丙酮酸羧化酶使丙酮酸羧基化生成草酰乙酸,而草酰乙酸羧化酶则催化草酰乙酸分解成丙酮酸和二氧化碳。因此羧化酶参与呼吸过程中二氧化碳的转移。

脂肪酸乙酰CoA的转移相关内容

  乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸-丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线

关于乙酰CoA的转移的介绍

  乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸-丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线

软脂酸的制备方法乙酰CoA的转移

乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸—丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线粒体

乙酰CoA的转移

乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸-丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线粒体

糖的分解代谢(二)

  (7)延胡索酸的水化  延胡索酸酶仅对延胡索酸的反式双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。  (8)草酰乙酸再生  在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是

回补反应的反应

某一代谢系统所必需,且继续为该代谢系统以外的系统消耗进行补充的物质反应。例如为了三羧酸循环协调运行,必须经常接受乙酰辅酶A的草酰乙酸。但是这个物质和它的前体物质α-酮戊二酸等又作为氨基酸合成的原料被消耗,因此必须用某种方法补充所缺乏的草酰乙酸。这种反应,在动物进行丙酮酸羧化酶反应,在植物和细菌,则进

关于有氧呼吸产生二氧化碳的介绍

  生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(-COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2。细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要。  在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集

羧化酶的基本信息

中文名羧化酶外文名carboxylase存在于酵母、细菌、植物参    与呼吸过程中二氧化碳的转移羧化酶存在于酵母、细菌、植物和动物组织中。丙酮酸羧化酶使丙酮酸羧基化生成草酰乙酸,而草酰乙酸羧化酶则催化草酰乙酸分解成丙酮酸和二氧化碳。因此羧化酶参与呼吸过程中二氧化碳的转移。定义羧化酶(carboxy

关于柠檬酸循环的总结介绍

  乙酰-CoA+3NAD++FAD+ADP+Pi+CoA-SH—→2CO2+3NADH+FADH2+ATP+3H++CoA-SH  1、CO₂的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β氧化脱羧,辅酶是nad+,它们先使底物脱氢

三羧酸循环的循环产物和中间物介绍

乙酰-CoA+3NAD++FAD+ADP+Pi+CoA-SH—→2CO2+3NADH+FADH2+ATP+3H++CoA-SH1、CO₂的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β氧化脱羧,辅酶是nad+,它们先使底物脱氢生成草酰

三羧酸循环的循环总结介绍

  乙酰-CoA+3NAD++FAD+ADP+Pi+CoA-SH—→2CO2+3NADH+FADH2+ATP+3H++CoA-SH  1、CO₂的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β氧化脱羧,辅酶是nad+,它们先使底物脱氢

苹果酸脱氢酶测定实验

基本方案             实验方法原理 L-苹果酸:NAD 氧化还原酶,MDH。L-苹果酸 + NAD+⇌ 草酰乙酸 + NADH + H+实验首选逆反应。

苹果酸脱氢酶测定

实验方法原理 L-苹果酸:NAD 氧化还原酶,MDH。L-苹果酸 + NAD+⇌ 草酰乙酸 + NADH + H+实验首选逆反应。实验材料 MDH 稀释溶液试剂、试剂盒 磷酸钾NADH草酰乙酸仪器、耗材 分光光度计实验步骤 实验所需「试剂」具体见「其他」0.98 ml 实验混合物0.02 ml MD

苹果酸脱氢酶测定实验

实验方法原理L-苹果酸:NAD 氧化还原酶,MDH。L-苹果酸 + NAD+⇌ 草酰乙酸 + NADH + H+实验首选逆反应。实验材料MDH 稀释溶液试剂、试剂盒磷酸钾NADH草酰乙酸仪器、耗材分光光度计实验步骤实验所需「试剂」具体见「其他」0.98 ml 实验混合物0.02 ml MDH 稀释溶

糖异生概述(一)

  非糖物质转变为葡萄糖或糖原的过程称为糖异生(gluconeogenesis)。非糖物质主要有生糖氨基酸(甘、丙、苏、丝、天冬、谷、半胱、脯、精、组等)、有机酸(乳酸、丙酮酸及三羧酸循环中各种羧酸等)和甘油等。不同物质转变为糖的速度不同。  进行糖异生的器官,首推肝脏,长期饥饿和酸中毒时肾脏中的糖

关于糖异生作用的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5

关于糖异生的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5

关于糖原异生作用的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5