多线染色体的形态结构
并行排列的染色质纤维多线染色体是DNA多次复制后所产生的子染色体整齐排列,紧密结合在一起而形成的。它所在的细胞在此过程中处于永久间期阶段,不分裂,因而随着复制的不断进行,核体积不断增加,多线化细胞的体积也相应增大。同种动物的不同组织以及不同动物的相同组织的多线化程度各不相同。例如摇蚊马尔皮基氏管细胞的染色体最多能复制 9次,从而使每对同源染色体组含有 512(29)条染色单体;唾腺细胞染色体复制13次,因而含有8192(213)条染色单体。带和间带沿着多线染色体的长轴有一系列深色的带和透亮的间带交替排列。带上的 DNA纤维高度卷曲,DNA 含量高,故能用碱性染料着色,呈孚尔根阳性反应,260纳米紫外光吸收强;间带的DNA含量低,不能用碱性染料着色,呈孚尔根阴性反应,260纳米紫外光吸收弱。各种多线染色体上带的数目、形态、大小及其分布位置都很稳定。带和间带的分布图谱简称带谱。C.B.布里奇斯首先建立起黑腹果蝇唾腺染色体的带谱。至今......阅读全文
关于染色体检查的性染色体数目和形态异常
(1)X染色体缺失 特纳(Turner)综合征:45,X染色体为45个,只有1个X染色体。表型为女性,但性腺发育不全,第二性征发育延迟或发育不全。个短小,耳畸形低位、高腭、小颌、后发际低、短颈、有颈蹼、盾状胸、乳距宽、肘外翻及智力可能有轻度缺陷等。 尚有核型为45,X/46,XX嵌合体;X染色体
染色体的结构序列
染色体要确保在细胞世代中保持稳定,必须具有自主复制、保证复制的完整性、遗传物质能够平均分配的能力,与这些能力相关的结构序列是: 自主复制 20世纪70年代末首次在酵母菌中发现。自主复制DNA序列具有一个复制起始点,能确保染色体在细胞周期中能够自我复制,从而保证染色体在世代传递中具有稳定性和连
Y染色体的结构
然而,此次的基因测序发现,Y染色体包含着约78个编码蛋白质的基因,比原先认为的40个左右要多。更重要的是,Y染色体内部存在一些“回文结构”,可能有着基因修复作用。这或许将可以解释,雄性是如何在Y染色体崩解的过程中保留住那些对性别和生存至关重要的基因的机制。染色体呈双螺旋结构,如果其中的一个区域对
染色体的结构简介
染色体的超微结构显示染色体是由直径仅100埃(Å,1埃=0.1纳米)的DNA-组蛋白高度螺旋化的纤维所组成。每一条染色单体可看作一条双螺旋的DNA分子。有丝分裂间期时,DNA解螺旋而形成无限伸展的细丝,此时不易为染料所着色,光镜下呈无定形物质,称之为染色质。有丝分裂时DNA高度螺旋化而呈现特定的
白线薯的形态特征及生长环境
形态特征 草质、落叶藤本;枝 稍扭曲,有直纹,无毛,干时浅灰色或微褐色。叶薄纸质,三角形或微圆,长8~18厘米,宽与长近相等,顶端钝或有时短尖,基部近截平至微圆,边缘有波状粗齿至近全缘,两面无毛或下面脉上稍被微柔毛;掌状脉向上和向下的常各5条,在下面凸起,网脉纤细,可见;叶柄比叶片长或与之近等
根据染色体不同形态分类
异固缩(heteropythosis)根据染色体不同形态分为:异固缩、正异固缩、负异固缩,通常发生在细胞分裂时,核的异固缩有可逆和不可逆区分。
西瓜粗线期染色体形态
西瓜邻近着丝点的异染色质节段一般较大而清晰,定位于远端的染色粒小染色轻、可以得出西瓜粗线期染色体异染色质节段和染色粒的分布模式是近中间类型的。这种分布类型与甜菜相似,而与番茄和苜蓿不同。西瓜染色体两臂上定位于远端的轻染小染色粒,于不同细胞间和不同制片间是变化的。这种变化可能是由于粗线期发育的不同阶段
细菌的形态与结构
细菌(Bacterium)是属于原核型细胞的一种单胞生物,形体微小,结构简单。无成形细胞核、也无核仁和核膜,除核蛋白体外无其他细胞器。在适宜的条件下其相对稳定的形态与结构。一般将细菌染色后用光学显微镜观察,可识别各种细菌的形态特点,而其内部的超微结构须用电子显微镜才能看到。细菌的形态对诊断和防治疾病
真菌的形态结构介绍
营养体结构真菌营养生长阶段的结构称为营养体结构。绝大多数真菌的营养体都是可分枝的丝状体,单根丝状体称为菌丝(hypha)。许多菌丝在一起统称菌丝体(mycelium)。菌丝体在基质上生长的形态称为菌落(colony)。菌丝在显微镜下观察时呈管状,具有细胞壁和细胞质,无色或有色。菌丝可无限生长,但直径
石膏的结构形态
单斜晶系 , a0=0.568nm,b0=1.518nm,c0=0.629nm,β=11823';Z=4。 晶体 结构由[SO4]2-四面体与Ca2+联结成(010)的双层, 双层间 通过H2O 分子联结 。其完全 解理 即沿此方向发生。Ca2+的配位数为8,与相邻的4个[SO4] 四面
多羽节肢蕨的形态特征
土生植物。植株高约50-70厘米。根状茎横走,粗约5-6毫米,密被鳞片; 鳞片卵状披针形,浅棕色或偶为灰白色,顶端渐尖,边缘有睫毛。叶近生或远生;叶柄长约15-25厘米,禾秆色或淡紫色,光滑无毛。叶片一回羽状,卵状披针形,长约30-50厘米,宽约15-25厘米; 羽片可多达12对,卵状披针形,长
滑触线的结构多式多样,因此被广泛应用于各个行业
滑触线由铝导轨、导轨支架、绝缘子组件以及外置式集电器等组件组合而成。滑触线运行可靠,绝不发生电源中断故障。可使用于高温、高粉尘、高腐蚀等恶劣环境。由于该产品具有电流大、耐高温、抗腐蚀等特点,因此被广泛地应用于冶金、造船、港口装卸等行业。 滑触线是一种适用异常高温恶劣环境的滑接输电装置,
滑触线的结构多式多样,因此被广泛应用于各个行业
滑触线由铝导轨、导轨支架、绝缘子组件以及外置式集电器等组件组合而成。滑触线运行可靠,绝不发生电源中断故障。可使用于高温、高粉尘、高腐蚀等恶劣环境。由于该产品具有电流大、耐高温、抗腐蚀等特点,因此被广泛地应用于冶金、造船、港口装卸等行业。 滑触线是一种适用异常高温恶劣环境的滑接输电装置,
染色体结构畸变的介绍
染色单体或染色单体间结构的变化有两种形式: ①简单的缺失,即单体断裂下来的片断丢失; ②结构重排,即发生在同一染色体臂内或臂间的单体内互换和发生在不同染色体的单体间的互换。互换可以相等或不相等。 单体间互换按重接方式又可分为两种类型。如果断裂端以着丝粒为中心的近心部与近心部相接,远心部与远
费城染色体的结构特点
费城染色体指9号染色体长臂(9q34)上的原癌基因abl转位至22号染色体(22q11)上的bcr(B-cell receptor)基因重新组合成融合基因。在大部分CML,部分ALL及少数急性髓细胞白血病中可见。
染色体结构变异实验
实验方法原理染色体结构变异主要有缺失、重复、倒位、易位四种。其发生过程是由于同源染色体或非同源染色体之间发生断裂,然后发生错误重接的结果。各种结构变异的杂合体,在细胞分裂过程中常常表现不正常的细胞学行为,可以进行细胞学鉴定。在减数分裂过程粗线期,可以观察到缺失杂合体的“缺失环”,重复杂合体的染色体突
染色体结构变异实验
实验方法原理 染色体结构变异主要有缺失、重复、倒位、易位四种。其发生过程是由于同源染色体或非同源染色体之间发生断裂,然后发生错误重接的结果。各种结构变异的杂合体,在细胞分裂过程中常常表现不正常的细胞学行为,可以进行细胞学鉴定。在减数分裂过程粗线期,可以观察到缺失杂合体的“缺失环”,重复杂合体的染色体
染色体结构变异实验
实验方法原理:染色体结构变异主要有缺失、重复、倒位、易位四种。其发生过程是由于同源染色体或非同源染色体之间发生断裂,然后发生错误重接的结果。各种结构变异的杂合体,在细胞分裂过程中常常表现不正常的细胞学行为,可以进行细胞学鉴定。在减数分裂过程粗线期,可以观察到缺失杂合体的“缺失环”,重复杂合体的染色体
染色体病:结构性染色体畸变
结构性染色体畸变 这种畸变是在细胞分裂过程中曾有染色体断裂所致。常见的结构异常有缺失、环状染色体、易位、重复、倒位和等臂染色体。 (1)缺失:指染色体丢失一段。即染色体一处断裂,其无着丝粒的一端常丢失,成为末端缺失;染色体两处断裂,可造成中间段的丢失,为中间缺失。由于遗传基因随染色体断片而丢失
染色体病:结构性染色体畸变
结构性染色体畸变 这种畸变是在细胞分裂过程中曾有染色体断裂所致。常见的结构异常有缺失、环状染色体、易位、重复、倒位和等臂染色体。 (1)缺失:指染色体丢失一段。即染色体一处断裂,其无着丝粒的一端常丢失,成为末端缺失;染色体两处断裂,可造成中间段的丢失,为中间缺失。由于遗传基因随染色体断片而丢失
免疫缺陷病毒的形态结构
病毒呈球形,直径100~120nm,电镜下可见一致密的圆锥状核心,内含病毒RNA分子和酶(逆转录酶、整合酶、蛋白酶),病毒外层囊膜系双层脂质蛋白膜,其中嵌有gp120和gp41,分别组成刺突和跨膜蛋白。囊膜内面为P17蛋白构成的衣壳,其内有核心蛋白(P24)包裹RNA。
关于间体的形态结构介绍
间体(mesosome,或中体)是一种由细胞质膜内褶而形成的囊状构造,其中充满着层状或管状的泡囊。多见于革兰氏阳性细菌。每个细胞含一至少数几个。着生部位可在表层或深层,前者与某些酶如青霉素酶的分泌有关,后者与DNA的复制、分配以及与细胞分裂有关。也有学者提出不同的看法,认为“间体”仅是电镜制片时
细菌的大小与形态结构
观察细菌常用光学显微镜,通常以微米(Micrometer,um;1um=1/1000mm)作为测量它们大小的单位。内眼的最小分辩率为0.2mm,观察细菌要用光学显微镜放大几百倍到上千倍才能看到。一、球菌(Coccus) 呈圆球形或近似圆球形,有的呈矛头状或肾状。单个球菌的直径约在0.8~1.2um左
茎的形态与结构实验
[目的要求] 1.掌握枝、芽和茎的外部形态和类型。 2.掌握双子叶植物茎的初生构造及次生构造。 3.了解木材三切面的结构特点;双子叶植物根茎的构造。 4.掌握单子叶植物茎与根茎的内部构造。 [材料用品] 材料:校园植
血小板的形态及其结构
血小板描述:细胞碎片,体积很小,形状不规则,常成群分布在红细胞之间。 循环血中正常状态的血小板呈两面微凹、椭圆形或圆盘形,叫做循环型血小板。人的血小板平均直径约2~4微米,厚0.5~1.5微米,平均体积7立方微米。血小板虽无细胞核,但有细胞器,此外,内部还有散在分布的颗粒成分。血小板一旦与创伤面或玻
血小板的形态结构表现
血小板描述: 细胞碎片,体积很小,形状不规则,常成群分布在红细胞之间。 循环血中正常状态的血小板呈两面微凹、椭圆形或圆盘形,叫做循环型血小板。人的血小板平均直径约2~4微米,厚0.5~1.5微米,平均体积7立方微米。血小板虽无细胞核,但有细胞器,此外,内部还有散在分布的颗粒成分。血小板一旦与
血小板的形态及其结构
血小板描述:细胞碎片,体积很小,形状不规则,常成群分布在红细胞之间。 循环血中正常状态的血小板呈两面微凹、椭圆形或圆盘形,叫做循环型血小板。人的血小板平均直径约2~4微米,厚0.5~1.5微米,平均体积7立方微米。血小板虽无细胞核,但有细胞器,此外,内部还有散在分布的颗粒成分。血小板一旦与创伤面或玻
血小板的形态及其结构
血小板描述:细胞碎片,体积很小,形状不规则,常成群分布在红细胞之间。 循环血中正常状态的血小板呈两面微凹、椭圆形或圆盘形,叫做循环型血小板。人的血小板平均直径约2~4微米,厚0.5~1.5微米,平均体积7立方微米。血小板虽无细胞核,但有细胞器,此外,内部还有散在分布的颗粒成分。血小板一旦与创伤面或玻
根的形态与结构实验
[目的要求] 掌握双子叶植物和单子叶植物根的结构特点。了解种子植物的根尖分区、根系类型及根瘤与菌根的形态结构。 [材料用品] 材料:蚕豆、棉花、小麦、玉米、蓖麻等根系标本,洋葱根尖的纵切片,水稻或小麦根横切片,胡萝卜根,蚕豆或棉幼根横切片,蚕豆侧根发生纵横切片。蚕豆老根
叶绿体的形态与结构介绍
在高等植物中叶绿体象双凸或平凸透镜,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。