光谱分析的基本形式

①线状光谱。由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长范围内仍包含各种不同的波长成分。原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自己特殊的光谱系列。通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析。②带状光谱。由一系列光谱带组成,它们是由分子所辐射,故又称分子光谱。利用高分辨率光谱仪观察时,每条谱带实际上是由许多紧挨着的谱线组成。带状光谱是分子在其振动和转动能级间跃迁时辐射出来的,通常位于红外或远红外区。通过对分子光谱的研究可了解分子的结构。③连续光谱。包含一切波长的光谱,炽热固体所辐射的光谱均为连续光谱。同步辐射源(见电磁辐射)可发出......阅读全文

铝厂质检光谱分析都是做些什么

铝厂一般使用谱仪作为质量控制的一种手段,主要用于控制铝合金中各个元素的配比情况。速度较快的火花火花直读直读光一般在炉前使用。火花直读直接分析铝锭,通过取样工具取好铝锭,待铝锭冷却后直接上机分析,分析时间在60秒左右。ICP(等离子发射光谱仪)在实验室使用地点,作为成品的终检验手段,同时弥补火花直读在

光谱分析法有哪些类型

光谱分析法的类型包括:1、可见及紫外分光光度法分光光度法的理论基础是朗伯-比尔(Lamber-Beer)定律。Lamber-Beer定律:A=k·b·c                              A为吸光度                              k—吸光系数   

X射线荧光光谱分析概述

X射线荧光光谱分析(X Ray Fluorescence,XRF)是固体物质成分分析的常规检测手段,也是一种重要的表面/表层分析方法。由于整体技术和分光晶体研制发展所限,早期的X射线荧光光谱仪检测范围较窄,灵敏度较差。随着测角仪、计数器、光谱室温度稳定等新技术的进步,使现代X射线荧光光谱仪的测量精密

光谱分析法分类及特点

光谱分析法分类及特点仪器分析中的光学分析方法可以分为光谱分析方法和非光谱分析方法。非光谱分析法是通过光的其他性质(如反射、折射、衍射、干涉等)的变化作为分析信息的分析方法,如旋光法、折射法、干涉法、散射浊度法、X射线衍射法、电子铲衍射法等。光谱分析方法通过测定待测物质的某种光谱,根据光谱中的波长特征

三种光谱分析技术(一)

AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,因此小编今天就带大家辨一辨这“光谱三兄弟”。“光谱三兄弟”简介AAS(原子吸收光谱):基于气态的

植物光谱分析仪参考文案

  TOP-1100植物光谱仪/植物光谱分析仪是一款小巧的主要测量植物反射率的仪器,可根据反射系数确定植物特征。通过各种反射系数可以评定叶绿素含量,和其他重要的特征。有两个标准版本光化学反射系(PRI)数和归一化植被指数(NDVI)。主要用于:光合作用研究;·植物生物学;·植物筛选和野外研究;·胁迫

光谱分析仪器有哪些?

现代光谱分析仪器有原子发射光谱仪、原子吸收光谱仪(原子吸收分光光度计)、红外光谱仪等。

光谱分析与太阳光谱

  光谱分析与太阳光谱  光谱学是一门多学科交叉的学科,其已有三百多年的研究历史。自从1666年,牛顿利用玻璃棱镜把通过玻璃棱镜的太阳光展成从红光到紫光的各种颜色的光谱,发现了太阳发射的白光是由各种颜色的光组成的复合光后逐渐成为一种科学研究的重要手段。在三百多年的研究历史长河中,光谱学的研究范围也逐

光谱分析仪性能特点分析

  光谱分析仪是一种常用的分析仪器,是根据原子所发射的光谱来测定物质的化学组分的,产品被广泛用于多个领域中。   光谱分析仪的性能特点   1、仪器采用的独立出射狭缝为国内首创,世界先进。金属整缝的特点是仪器调试方便、快捷,便于出射狭缝增加通道(用户可仅考虑目前应用的元素,以后需要的通道可随时增

光电直读光谱分析条件选择解析

光电直读光谱分析条件选择解析    各种类别仪器分析法中的条件选择是非常重要的一个环节。在光电直读光谱分析工作中, 制作标准曲线时, 其条件选择与条件实验是一个棘手的问题, 然而现行各种仪器操作手册、教科书对此提及甚少,  工作人员只能借鉴仪器所推荐的分析条件进行标准曲线 的制作, 这样做是不准确的

如何应用光谱分析检测技术?

  可以根据光谱来鉴别物质和确定它的化学组成,这种方法叫做光谱分析。由于光谱检测可以在不破坏样品的前提下检测出待测物的物质成分,因此光谱仪一直是许多物质分析实验室必备的基本仪器之一。作为通用分析仪器大家族中不可或缺也是应用最为广泛的光谱类仪器,在生物、化学、色度计量、环境检测、成分检测、医学、化工等

金属光谱光谱分析仪作用

金属光谱分析仪,顾名思义就是对金属进行分析,其实最本质的作用就是检测金属里的元素含量的成分的多少,从而判断产品是不是达到国标并合格,然后进行出厂。

红外光谱分析,你了解多少?

  红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可

紫外—可见吸收光谱分析方法

4.3.1.1 定性分析无机元素的定性分析应用紫外—可见分光光度法比较少,主要采用原子发射光谱法或化学分析法。在有机化合物的定性分析鉴定及结构分析方面,由于紫外-可见吸收光谱较为简单,光谱信息少,特征性不强,并且不少简单官能团在近紫外光区及可见光区没有吸收或吸收很弱,在应用时也有较大的局限性。但是,

光谱分析法分类及特点

仪器分析中的光学分析方法可以分为光谱分析方法和非光谱分析方法。 非光谱分析法是通过光的其他性质(如反射、折射、衍射、干涉等)的变化作为分析信息的分析方法,如旋光法、折射法、干涉法、散射浊度法、X射线衍射法、电子铲衍射法等。光谱分析方法通过测定待测物质的某种光谱,根据光谱中的波长特征

紫外—可见吸收光谱分析方法

4.3.1.1 定性分析无机元素的定性分析应用紫外—可见分光光度法比较少,主要采用原子发射光谱法或化学分析法。在有机化合物的定性分析鉴定及结构分析方面,由于紫外-可见吸收光谱较为简单,光谱信息少,特征性不强,并且不少简单官能团在近紫外光区及可见光区没有吸收或吸收很弱,在应用时也有较大的局限性。但是,

光谱分析仪器有哪些?

光谱分析1)可见分光光度计2)紫外可见分光光度计3)近红外分光光度计4)红外分光光度计5)原子吸收分光光度计6)原子荧光分光光度计7)荧光分光光度计8)光声分光光度计9)光电直读光谱仪10)ICP光谱仪11)MPT光谱仪12)激光光谱仪13)拉曼分光光度计14)光谱成像仪15)旋光仪16)色度仪

为什么在放大电路中输出电阻越小,带负载能力越强

因为输入电阻的大小反映了放大电路对信号源的影响程度。输入电阻越大,放大电路从信号源汲取的电流(即输入电流)就越小,信号源内阻上的压降就越小,带负载能力越强。根据放大电路的作用可以将其分为:电压放大电路、电流放大电路和功率放大电路。根据放大电路的组成元件可以分为晶体管放大电路和场效应管放大电路。晶体管

有那几种重要的拉曼光谱分析技术

  ①单道检测的拉曼光谱分析技术;  ②以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术;  ③采用傅立叶变换技术的FT-Raman光谱分析技术;  ④共振拉曼光谱分析技术;  ⑤表面增强拉曼效应分析技术;

发射光谱分析的基本信息介绍

  在历史上,牛顿是第一个发现色散现象的科学家。1666年,牛顿发现,如果将一枚棱镜置于一个光源和一块屏幕之间,就会看到彩色的映像。因此,他推断太阳光是由不同折射系数的光线组成的,不同的折射系数决定了这些光线的颜色。  分析化学中包括了光学分析法,而发射光谱分析是一方法中最为古老的一种。其理论基础就

原子吸收光谱分析中的干扰及消除

虽然原子吸收分析中的干扰比较少,并且容易克服,但在许多情况下是不容忽视的。为了得到正确的分析结果,了解干扰的来源和消除是非常重要的。1物理干扰及其消除方法物理干扰是指试样左转移,蒸发和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。1.1物理干扰产

【仪器】原子吸收光谱分析测定条件的选择

通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。狭缝宽度影响光谱通带宽度与检测器接受的能量。原子吸收光谱分析中,光谱重叠干

怎样选择原子吸收光谱分析的最佳条件

转载:《分析测试百科网》火焰原子吸收法最佳条件的选择和自来水中钠的测定(工作曲线法)实验目的1、了解原子吸收光谱仪的原理和构造2、掌握优选测定条件的基本方法3、掌握标准曲线法实验原理原子吸收分光光度分析法是根据物质产生的原子蒸气对特定波长的光吸收作用来进行定量分析的。与原子发射光谱相反,元素的基态原

原子吸收光谱分析中的干扰及消除

虽然原子吸收分析中的干扰比较少,并且容易克服,但在许多情况下是不容忽视的。为了得到正确的分析结果,了解干扰的来源和消除是非常重要的。1 物理干扰及其消除方法物理干扰是指试样左转移,蒸发和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。1.1物理干扰

关于发射光谱分析的特征谱线

  瑞典科学家昂斯特朗指出,某种金属无论是处于单质状态还是处于化合物中,都将发出相同的光谱。这一观点载于他1852年发表的一篇论文中,在该论文中介绍了一系列固体和气体物质的光谱。1854年,美国人阿尔特在以上大量研究成果的基础上,正式提出了光谱分析带的数目、强度及位置都互不相同,因此可以通过对发射光

X射线荧光光谱分析技术的发展

归纳了X-射线荧光光谱分析技术发展的进程。从现代控制技术的改善、仪器检测性能的提高、元素检测范围的扩大等8方面阐述了波长色散X-射线荧光光谱技术的进展,还就能量色散X-射线荧光光谱仪的X射线管和探测器技术的快速发展及近10年来我国在X-射线荧光光谱分析方法方面的论文发表情况进行了总结,对近年来X-射

怎样选择原子吸收光谱分析的最佳条件

火焰原子吸收法最佳条件的选择和自来水中钠的测定(工作曲线法)实验目的1、了解原子吸收光谱仪的原理和构造2、掌握优选测定条件的基本方法3、掌握标准曲线法实验原理原子吸收分光光度分析法是根据物质产生的原子蒸气对特定波长的光吸收作用来进行定量分析的.与原子发射光谱相反,元素的基态原子可以吸收与其发射线波长

原子发射光谱分析法的特点

  (1)可多元素同时检测各元素同时发射各自的特征光谱;  (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);  (3)选择性高各元素具有不同的特征光谱;  (4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP)  (5)准确度较高5%~10% (一般光

原子发射光谱分析法的用途

AES法能够用微量的试样同时进行数十种元素的定性和定量分析。直接分析固体试样时,多数元素的灵敏度接近1μg/g。对液体试样能检出浓度为1ng/ml的待测元素。 所以此法对微量成分的分析很有用。试样可以是固体、气体或液体,并且任何化合物都能进行分析,原子发射光谱应用的领域非常广泛。

发射光谱分析的特征谱线介绍

  瑞典科学家昂斯特朗指出,某种金属无论是处于单质状态还是处于化合物中,都将发出相同的光谱。这一观点载于他1852年发表的一篇论文中,在该论文中介绍了一系列固体和气体物质的光谱。1854年,美国人阿尔特在以上大量研究成果的基础上,正式提出了光谱分析带的数目、强度及位置都互不相同,因此可以通过对发射光