课题组在高压下发现首个三元锰基化合物超导体系

非常规超导材料的探索和机理研究是凝聚态物理的重要方向。迄今为止,科学家发现了数以千计的超导材料和铜氧化物、铁基两个非常规高温超导家族。然而,基于3d过渡金属锰(Mn)的化合物超导体稀少,这主要归因于Mn([Ar]3d54s2)具有半满的3d壳层,使锰基化合物通常具有较强的磁性和磁拆对效应。2015年,中国科学院物理研究所/北京凝聚态物理国家研究中心程金光与雒建林等在高压下率先发现了第一个锰基化合物超导体MnP。研究对MnP施加高压抑制其长程磁有序,最终在磁性量子临界点(Pc ≈ 8 GPa)附近观察到超导电性(最高Tc ≈ 1 K),其高压相图中的超导毗邻长程磁有序,与较多非常规超导体系类似【Phys. Rev. Lett. 114, 117001 (2015)】。然而,高压下MnP的Tc太低,不利于超导机理的深入研究;且对于这种具有三维晶体结构的二元体系,较难对其进行有效的化学调控进而诱导出超导。因此,在具有低维结构的三元......阅读全文

课题组在高压下发现首个三元锰基化合物超导体系

  非常规超导材料的探索和机理研究是凝聚态物理的重要方向。迄今为止,科学家发现了数以千计的超导材料和铜氧化物、铁基两个非常规高温超导家族。然而,基于3d过渡金属锰(Mn)的化合物超导体稀少,这主要归因于Mn([Ar]3d54s2)具有半满的3d壳层,使锰基化合物通常具有较强的磁性和磁拆对效应。201

模板法制备镍钴锰三元正极材料

  模板法凭借其空间限域作用和结构导向作用,在制备具有特殊形貌和精确粒径的材料上有着广泛应用。  纳米多孔的333型粒子一方面可以极大缩短锂离子扩散路径,另一方面电解液可以浸润至纳米孔中为Li+扩散增加另一通道,同时纳米孔还可以缓冲长循环材料体积变化,从而提高材料稳定性。以上这些优点使得333型在水

镍钴锰三元材料的分析研究

  镍钴锰三元材料是近年来开发的一类新型锂离子电池正极材料,具有容量高、循环稳定性好、成本适中等重要优点,由于这类材料可以同时有效克服钴酸锂材料成本过高、锰酸锂材料稳定性不高、磷酸铁锂容量低等问题,在电池中已实现了成功的应用,并且应用规模得到了迅速的发展。据高工产研锂电研究所(GGII)披露,201

锰酸锂和三元锂电池技术对比

锰酸锂电池是指正极使用锰酸锂材料的电池,锰酸锂电池其标称电压在2.5~4.2v ,锰酸锂电池以成本低,安全性好而被广泛使用。锰酸锂电池是成本低、安全性和低温性能好的正极材料,但是其材料本身并不太稳定,容易分解产生气体,因此多用于和其它材料混合使用,以降低电芯成本,但其循环寿命衰减较快,容易发生鼓胀,

溶胶凝胶法制备镍钴锰三元正极材料

  溶胶凝胶法(sol-gel)最大优点是可在极短时间内实现反应物在分子水平上均匀混合,制备得到的材料具有化学成分分布均匀、具有精确的化学计量比、粒径小且分布窄等优点。  MEI等采用改良的sol-gel法:将柠檬酸和乙二醇加入到一定浓度锂镍钴锰硝酸盐溶液中形成溶胶,然后加入适量的聚乙二醇(PEG-

锰基催化剂催化燃烧挥发性有机化合物研究取得进展

挥发性有机化合物(VOCs)是造成大气复合污染的重要前体物之一。催化氧化技术具有效率高、能耗低的优点,是可行的VOCs去除技术之一。铂、钯等贵金属催化剂是最成熟的VOCs燃烧催化剂,但其来源稀缺、成本高昂限制了大规模应用。锰氧化物(MnOx)具有丰富的自然资源、易调节的物理化学性质和环境友好的特性,

锰基催化剂催化燃烧挥发性有机化合物研究新进展

  挥发性有机化合物(VOCs)是造成大气复合污染的重要前体物之一。催化氧化技术具有效率高、能耗低的优点,是可行的VOCs去除技术之一。铂、钯等贵金属催化剂是最成熟的VOCs燃烧催化剂,但其来源稀缺、成本高昂限制了大规模应用。锰氧化物(MnOx)具有丰富的自然资源、易调节的物理化学性质和环境友好的特

三元锂电池稳定性选择铝还是锰?

  同样身为三元锂电池,我和我兄弟还是有不同的性格与特征。大哥镍钴铝制作不仅工艺要求高且成本高,但铝可以起到提高电池循环化学稳定性的作用,搭配在三元体系中,镍含量可以得到一定提升,从而实现更高的电池能量密度。但是镍钴铝晶体结构较镍钴锰而不稳定,容易在较高温度的情况下,发生崩塌导致热失控,进而引发风险

镍钴锰三元正极材料制备固相法介绍

  三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333

喷雾干燥法制备镍钴锰三元正极材料

  喷雾干燥法因自动化程度高、制备周期短、得到的颗粒细微且粒径分布窄、无工业废水产生等优势,被视为是应用前景非常广阔的一种生产三元材料的方法。  OLJACA等采用喷雾干燥法制备了组成为333三元材料,在60~150℃高温下,镍钴锰锂硝酸盐迅速雾化,在短时间内水分蒸发,原料也迅速混匀,最后得到的粉末

富锂锰基正极材料的分析介绍

  随着电动汽车和储能电站等电力设备的快速发展,对高能量密度的锂离子电池的需求日益增加.高比容量(>250 mAh·g-1)的富锂锰基正极材料,有望成为锂离子电池实现高比能量(>350 Wh·kg-1)的关键正极材料.富锂锰基正极材料的Li2MnO3相和晶格氧参与电化学反应使其拥有了高容量,但这也导

硫酸锰营养琼脂培养基配方

中文名硫酸锰营养琼脂培养基 英文名Manganese Sulphate Nutrient Medium用途用于蜡样芽胞杆菌鉴定中蛋白质毒素结晶体试验标准GB 4789.14-2014配方(g/L)配方(每升)         含量 胰蛋白胨                 5g 葡萄糖       

物理所锰基绝缘体化合物中反铁磁序高压调控研究获进展

  铜氧化物和铁基高温超导体的母体化合物都具有反铁磁长程序,通过采用化学掺杂或施加压力等手段可将其反铁磁长程序有效抑制,产生反铁磁至顺磁转变,在转变点附近由于电荷,轨道、自旋、晶格等自由度的相互作用,使系统处于磁涨落状态(即奇异量子态),通常具有这种量子态的系统在低温下会呈现出超导电性。因此,抑制具

镍钴锰三元正极材料制备不同方法的对比

  固相法虽工艺简单,但材料形貌、粒径等难以控制;共沉淀法通过控制温度、搅拌速度、pH值等可制备粒径分布窄、振实密度高等电化学性能优异的三元材料,但是共沉淀法需要过滤、洗涤等工序,产生大量工业废水;溶胶凝胶法、喷雾热解法和模板法得到的材料元素化学计量比精确可控、颗粒小且分散性好,材料电池性能优异,但

镍钴锰三元正极材料制备共沉淀法介绍

  共沉淀法是基于固相法而诞生的方法,它可以解决传统固相法混料不均和粒径分布过宽等问题,通过控制原料浓度、滴加速度、搅拌速度、pH值以及反应温度可制备核壳结构、球形、纳米花等各种形貌且粒径分布比较均一的三元材料。  原料浓度、滴加速度、搅拌速度、pH值以及反应温度是制备高振实密度、粒径分布均一三元材

三元、四元等化合物的概念

三元、四元等化合物(1) 用特定的根基名称命名 三元、四元等化合物,若其组成的根基具有特定的名称时,则应在尽可能的情况下,采用二元化合物的命名法。例如:KCN 氰化钾 Co(OH)₃氢氧化高钴BaSO₄硫酸钡  SO₂Cl₂硫酸氯、氯化硫酰SOCl₂亚硫酰氯 SO₂(NH₂)₂硫酰(二)胺、二氨基硫

富锂锰基正极材料--水分含量的测定

  本标准规定了富锂锰基正极材料的术语和定义、要求、试验方法、检验规则、标志、包装、运输、贮存、质量证明书及订货单(或合同)内容。   本标准适用于锂离子电池用正极活性物质富锂锰基正极材料。   术语和定义   GB/T 20252 中界定的术语和定义适用于本文件。   要求   产品分类

胍基化合物的简介

  体液中氨基酸的种类除组成人体蛋白的二十种氨基酸外,还有其代谢产物如胍基化合物,某些疾病往往会导致这些物质的变化。反过来说,这些产物测量也有助于某些疾病诊断。

化合物取代基次序规则

①将各种取代基原子按其原子序数大小排列,大者为“较优”基团,若为同位素则质量高者定为“较优”基团。例如Cl>O>C>H; D>H,“>”表示优于。②如果两个基团的第一个元素相同 (例如C) 则比较与它直接相连的几个原子。比较时按原子序数排列,先比较各组中最大者,若仍相同,再依次比较第二、第三个。例如

锰酸锂电池和三元锂电池的应用差异

锰酸锂电池和三元锂电池都是市面上比较常见的电池,两种电池相比之下也是各有千秋,下面就来看看锰酸锂电池和三元锂电池之间的区别对比。1、制造成本锰酸锂电池的主要原材料锰,在我国的储量非常丰富,所以制造成本很低,与其他类型的电池相比有很大的成本优势,而三元锂电池的原材料都是稀有金属,全球的储量都比较有限,

关于镍钴锰三元锂离子电池材料的用途介绍

  1、钴的用途在于可以稳定材料的层状结构,而且可以提高材料的循环和倍率性能,但过高的钴含量会导致实际容量降低;  2、镍是材料的重要活性物质之一,用途在于提高新增材料的体积能量密度.但镍含量高(即高镍)的三元材料也会导致锂镍混排,从而造成锂的析出;  3、锰有良好的电化学惰性,使材料始终保持稳定的

三元锂电池和锰酸锂电池的性能差异

1、三元锂能量密度高三元锂能量密度一般为180-230Wh/kg,而高镍三元锂电池更是轻松达到250Wh/kg,但高镍会增加电池不稳定性。而磷酸铁锂能量密度一般为140-160 Wh/kg,目前最高或可达180Wh/kg。刀片电池也属磷酸铁锂,如刀片电池第一代能量密度140 Wh/kg,第二代或实现

锰酸锂电池和三元锂电池区别对比

锰酸锂电池是指正极使用锰酸锂材料的电池,锰酸锂电池其标称电压在2.5~4.2v ,锰酸锂电池以成本低,安全性好而被广泛使用。锰酸锂电池是成本低、安全性和低温性能好的正极材料,但是其材料本身并不太稳定,容易分解产生气体,因此多用于和其它材料混合使用,以降低电芯成本,但其循环寿命衰减较快,容易发生鼓胀,

锂电池富锂锰基正极材料的介绍

  高容量是锂电池的发展方向之一,但当前的正极材料中磷酸铁锂的能量密度为580Wh/kg,镍钴锰酸锂的能量密度为750Wh/kg,都偏低。富锂锰基的理论能量密度可达到900Wh/kg,成为研发热点。  富锂锰基作为正极材料的优势有:1、能量密度高;2、主要原材料丰富。由于开发时间较短,目前富锂锰基存

三元锂离子电池和锰酸锂离子电池的性能差异

锂离子电池以碳素材料为负极,以含锂的化合物为正极,根据正极化合物不同,常见的锂离子电池有三元锂离子电池、锰酸锂离子电池、磷酸铁锂离子电池等。下面简单介绍下三元锂离子电池和锰酸锂离子电池的区别。1、三元材料锂离子电池我们常说的三元锂离子电池就是三元聚合物锂离子电池,它指正极材料使用镍钴锰酸锂或者镍钴铝

三元锂离子电池和锰酸锂离子电池性能对比

锂离子电池以碳素材料为负极,以含锂的化合物为正极,根据正极化合物不同,常见的锂离子电池有三元锂离子电池、锰酸锂离子电池、磷酸铁锂离子电池等。下面简单介绍下三元锂离子电池和锰酸锂离子电池的区别。1、三元材料锂离子电池我们常说的三元锂离子电池就是三元聚合物锂离子电池,它指正极材料使用镍钴锰酸锂或者镍钴铝

镍钴锰在三元锂离子电池中的研究进展

  固相法和共沉淀法是传统制备三元材料的重要方法,为了进一步改善三元材料电化学性能,在改进固相法和共沉法的同时,新的方法诸如溶胶凝胶、喷雾干燥、喷雾热解、流变相、燃烧、热聚合、模板、静电纺丝、熔融盐、离子交换、微波辅助、红外线辅助、超声波辅助等被提出。  与磷酸铁锂和钴酸锂比较,镍钴锰在达到一定温度

红外、微波等新型焙烧方法制备镍钴锰三元正极材料

  红外、微波等新型电磁加热相对于传统电阻加热,可大大缩短高温焙烧时间同时可一步制备碳包覆的复合正极材料。  HSIEH等采用新型红外加热焙烧技术制备了三元材料,首先将镍钴锰锂乙酸盐加水混合均匀,然后加入一定浓度的葡萄糖溶液,真空干燥得到的粉末在红外箱中350℃焙烧1h,然后在900℃(N2气氛下)

镍钴锰三元锂离子电池材料的用途及现状分析

  镍钴锰三元锂离子电池材料的用途及现状分析。在现有的二次电池体系中,无论从发展空间,还是从寿命、比能量、工作电压和自放电率等技术指标来看,锂离子电池都是当前最有竞争力的二次电池。良好的综合性能,使得三元材料成为目前市场的主流,以及最具潜力的一种电池正极材料,在数码电子产品、电动自行车、电动工具等领

锂离子电池的三元正极材料镍钴锰酸锂的介绍

  镍钴锰酸锂是锂离子电池的关键三元正极材料,化学式为LiNixCoyMn1-x-yO2。拥有比单元正极材料更高的比容量和更低的成本。钴酸锂是应用最广的电池材料之一,但钴资源日益匮乏,价格昂贵,且钴酸锂电池在使用过程中存在安全隐患。