蛋白质组的飞行时间质谱技术介绍
表面增强激光解吸离子化飞行时间质谱技术于2002 年由诺贝尔化学奖得主田中发明,刚刚产生便引起学术界的高度重视。SELDI 技术是蛋白质组学研究中比较理想的技术平台,其全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-tof)。其方法主要如下:通常情况下将样品经过简单的预处理后直接滴加到表面经过特殊修饰的芯片上,既可比较两个样品之间的差异蛋白,也可获得样品的蛋白质总览。因此,在应用方面具有显著优势。SELDI 技术分析的样品不需用液相色谱或气相色谱预先纯化,因此可用于分析复杂的生物样品。SELDI 技术可以分析疏水性蛋白质,PI 过高或过低的蛋白质以及低分子质量的蛋白质( < 25 000) ,还可以发现在未经处理的样品中许多被掩盖的低浓度蛋白质,增加发现生物标志物的机会。SELDI 技术只需少量样品,在较短时间内就可以得到结果,且试验重复性好,适合临床诊断及大规模筛选与疾病相关的生物标志物,特别是它可直接检测不......阅读全文
蛋白质组的飞行时间质谱技术介绍
表面增强激光解吸离子化飞行时间质谱技术于2002 年由诺贝尔化学奖得主田中发明,刚刚产生便引起学术界的高度重视。SELDI 技术是蛋白质组学研究中比较理想的技术平台,其全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-tof)。其方法主要如下:通常情况下将样品经过简单的预处理后直接滴加到表
飞行时间质谱技术
质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿质谱仪开始主要是作为一
飞行时间质谱技术的技术原理
表面增强激光解吸离子化飞行时间质谱技术于2002年由诺贝尔化学奖得主田中发明,刚刚产生便引起学术界的高度重视。SELDI技术是蛋白质组学研究中比较理想的技术平台,其全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-tof)。其方法主要如下:通常情况下将样品经过简单的预处理后直接滴加到表面经过特
飞行时间质谱技术的技术原理
表面增强激光解吸离子化飞行时间质谱技术于2002 年由诺贝尔化学奖得主田中发明,刚刚产生便引起学术界的高度重视。SELDI 技术是蛋白质组学研究中比较理想的技术平台,其全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-tof)。其方法主要如下:通常情况下将样品经过简单的预处理后直接滴加到表面经
飞行时间质谱技术与丝状真菌
侵袭性真菌感染是重症监护和器官移植患者死亡的高风险因素,其早期诊治对提高救治率至关重要。其中,丝状真菌是侵袭性真菌感染的主要病原菌之一,但丝状真菌生长缓慢(一般需要5~7d)限制了早期诊断,丝状真菌的早期鉴定与耐药性增强已成为临床救治的重大难题。目前,丝状真菌常用的鉴定方法为镜检和菌落形态联合鉴
飞行时间质谱-(TOF)
分析物的质荷比是根据分析物在真空飞行管中的飞行时间推算出的。飞行时间质谱的质量分析器由调制区、加速区、无场飞行空间和检测器等部分组成。样品分子电离以后,将离子加速并通过一个无场区,不同质量的离子具有不同的能量,通过无场区的飞行时间长短不同,可以依次被收集检测出来。四极杆 (Quadrupole,Q)
飞行时间质谱-(TOF)
分析物的质荷比是根据分析物在真空飞行管中的飞行时间推算出的。飞行时间质谱的质量分析器由调制区、加速区、无场飞行空间和检测器等部分组成。样品分子电离以后,将离子加速并通过一个无场区,不同质量的离子具有不同的能量,通过无场区的飞行时间长短不同,可以依次被收集检测出来。四极杆 (Quadrupole,Q)
飞行时间质谱简介
飞行时间质谱,Time of Flight Mass Spectrometer (TOF),是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管(ion drift tube)。由离子源产生的离子首先被收集。在收集器中所有离子速度变为0。使用一个脉冲电场加速后进入无场漂移管,并以恒定速度
飞行时间质谱的概述
飞行时间质谱,Time of Flight Mass Spectrometer (TOF),是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管(ion drift tube)。由离子源产生的离子首先被收集。在收集器中所有离子速度变为0。使用一个脉冲电场加速后进入无场漂移管,并以恒定速度飞向
飞行时间质谱的概述
飞行时间质谱,Time of Flight Mass Spectrometer (TOF),是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管(ion drift tube)。由离子源产生的离子首先被收集。在收集器中所有离子速度变为0。使用一个脉冲电场加速后进入无场漂移管,并以恒定速度飞向
飞行时间质谱联用仪性能介绍
飞行时间质谱仪属于高分辨质谱,主要根据离子的质荷比与在飞行桶中飞行时间的关系进行定性分析。样品离子质荷比越大,到达接收器所用时间越长;离子质荷比越小,到达接收器所用时间越短,根据这一原理,可以把不同质荷比的离子进行分离。利用飞行时间质谱仪可以弥补当前工作中不能筛查未知化学物定性的缺憾,同时有助于提高
高分辨飞行时间质谱
高分辨飞行时间质谱是一种用于预防医学与公共卫生学领域的分析仪器,于2012年09月18日启用。 技术指标 该设备用于复杂基质体系中未知化合物的鉴定,而低分辨的液-质联用仪无法解决上述问题。因为液-质联用仪不像气-质联用,它没有商业谱库可供检索。如果检测完全未知的化合物是无法使用低分辨率质谱(
飞行时间质谱的样概述
飞行时间质谱,Time of Flight Mass Spectrometer (TOF),是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管(ion drift tube)。由离子源产生的离子首先被收集。在收集器中所有离子速度变为0。使用一个脉冲电场加速后进入无场漂移管,并以恒定速度
飞行时间质谱的原理简介
飞行时间质谱有两种飞行模式,平行飞行模式和垂直飞行模式。在现代质谱产品中,大都已经采用垂直飞行模式。尤其在大气化学领域,美国的科研团队以质谱仪为主,欧洲则以测量粒径的仪器为主。其中,Aerodyne INC., Ionicon GmbH, THS INC.在近几年成为行业领军企业。 质谱仪需要
应用四极杆离子淌度飞行时间质谱进行蛋白质组学分析二
在该实验中,每次调查扫描执行15次并行MS/MS实验。如图3所示,结果表明将DDA与HD-DDA对比时,MS/MS总离子流(TIC)的增加与MS/MS通道数呈函数关系。每次运行的平均增加量为420%,与图2中所示结果一致。插图是15次MS/MS通道的示例,证明了可从样品中存在的较低丰度的肽中轻松获取
应用四极杆离子淌度飞行时间质谱进行蛋白质组学分析一
1沃特世公司 (英国曼彻斯特) 2慕尼黑理工大学 (德国弗赖辛)应用优势 ■ 改善蛋白质识别,增加蛋白质组覆盖范围 ■ 即使在极低浓度下也能实现可靠鉴定 ■ 更有效地进行LC/MS/MS分析从而加快决策过程简介随着自下而上(bottom-up)蛋白质组学分析的复杂性不断增加,对于质谱仪的能力
简介飞行时间质谱的化学电离质谱
化学电离质谱(Chemical Ionization Mass Spectrometer, CIMS)是大气领域中一种常见的软电离(Soft Ionization)手段。使用化学电离的好处是不会产生离子碎片,并可在线进样实时分析。目前大气化学领域采用的试剂(reagent),硝酸、乙醇、水最为常
飞行时间质谱的解析度的相关介绍
解析度(resolution) 在电子技术获得极大发展以后,ToF-MS的解析度得到了很大幅度的提升。因为需要解析离子到达传感器的时间,因此要对传感器信号进行不停的扫描,减少平均的时间(averaging time)。这个过程对于数模转换器(Analog Digital Converter,
飞行时间质谱研究加快-我国再获技术成果
近日,据Applied Sciences报道,日本福井大学工学研究所材料科学与工程系的研究人员利用多光子电离飞行时间质谱技术开发了一种用于测量水包油(O / W)乳液中的小油滴的系统。内径为15μm的毛细管柱构建了一个小巧的微观系统,样品由此引入并流过,使得引入长度大大缩短,对于观察并直接评估乳液十
飞行时间质谱研究加快-我国再获技术成果
飞行时间质谱技术是检验科学的新兴技术,原理是离子源产生的离子经加速后进入无场漂移管,再以恒定的速度飞向离子接收器,通过测量各种离子到达飞行管的时间,得到离子的质荷比。这一技术具有可检测分子量范围大、扫描速度快、仪器结构简单等优点。近年来,随着国内外研究进程的加快,该技术取得了较大突破,应用领域更
质谱那些事——飞行时间质谱的诞生(二)
然而当时的技术条件,分辨率并不是优势!这是Bendix利用TOF测定氙气的同位素质谱图, 从左到右分别是128,129,130,131,132,134和136,按照现代飞行时间分辨率的计算方式,这个分辨率只有 大约 130/0.25=520。简单的原理背后往往隐藏着工程难题!如下图,在红色框源区和蓝
质谱那些事——飞行时间质谱的诞生(一)
飞行时间质谱萌芽于曼哈顿计划。在1942-1945年期间,一些科学家意图设计这样的系统:一个恒定的加速电压U,一段真空管提供固定的飞行距离L,利用离子到达探测器时间t的不同来进行质荷比m/z的区分。原理很简单,几个基本公式即可理解:鉴于保密的原因,这个想法并没有在科学杂志和ZL文件上广泛传播,直到二
飞行时间质谱核酸检测技术在临床检测中的应用
飞行时间(Time-of-Flight)质量分析器是一种利用静电场加速离子后,以离子飞行速度差异来分析离子质荷比的仪器,与脉冲激光源基质辅助激光解吸电离(Matrix-Assisted Laser Desorption/Ionization, MALDI)配合,组成了飞行时间质谱。MALDI
关于飞行时间质谱计的简介
利用能量相同而质量不同的离子具有不同的速度,飞越漂移区经历时间不同的原理实现质量分离。飞行时间质谱计的特点是机械结构简单、分析速度快(微秒级)、离子利用率高、灵敏度高、能在较高的工作压强下工作,缺点是仪器体积大,测量与控制电路复杂。 其他类型真空质谱计还有射频质谱计、谐振感应质谱计等。
基质辅助激光解吸电离飞行时间质谱的介绍
基质辅助激光解吸电离飞行时间质谱每天可测定样品达数百个,特别适合于蛋白等生物大分子的高通量筛选,还可以寡核苷酸、基因的单核苷酸多态性进行分析;对天然与合成高分子的分子量和分子量分布进行分析。
飞行质谱技术
工作原理早期的飞行质谱为基质辅助激光解吸离子飞行质谱(maldi-tofms),基质使被分析蛋白质离子化,再由质谱测定。seldi把基质改为以色谱原理设计的蛋白芯片,增强了分离能力。芯片技术最初应用于DNA分析,称基因芯片。由于芯片整合了多种高技术:高度集成、超微化、计算机化、自动化,具有多样、快速
飞行质谱技术
飞行质谱的全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-TOF或SELDI)。质谱技术-飞行质谱是由2002年诺贝尔化学奖得主田中(Tanaka)发明,赛弗吉(Ciphergen)系统生物公司制造的特殊芯片,诞生伊始便引起学术界的重视,成为最引人注目的亮点。 工作原理 早期的飞行质谱为基
液体芯片飞行时间质谱技术在肿瘤早期诊断中的研究...
液体芯片-飞行时间质谱技术在肿瘤早期诊断中的研究进展万里川1王雅杰2 审稿:马庆伟1 康熙雄21、博扬通北京科技有限公司? 2、北京天坛医院检验科中文摘要: 液体芯片-飞行时间质谱技术利用磁珠俘获肿瘤患者与健康对照体液中低丰度特异蛋白或多肽,经飞行时间质谱测定和软件分析,建立由两者差异表达蛋白或多
用飞行时间质谱进行农药筛查
一、目的在使用飞行时间质谱对环境水源进行广泛的农药筛查的过程中,成功鉴定天然河水中发现的一种非目标未知污染物。二、背景TOF筛查常用于目标筛查工作;在这种情况下,一种全面的数据库用于在筛查采集过程中将关键的目标化合物作为目标。当分析环境水源时,农药污染筛查是最重要分析之一。然而,诸如兽药或人用药品及
离子阱飞行时间质谱工作方式
随着国内医药行业的飞速发展,以及国内外大环境的要求,质谱作为一种非常有用的检测仪器以及手段,逐渐受到国内医药企业的重视并不断普及。而其中的翘楚-高分辨质谱在药物研发方面,尤其是本人从事的药物杂质研究方面拥有着无与伦比的地位。然而,就质谱本身而言,不论是仪器维护还是应用研究,都需要有一定的理论基础