X射线荧光光谱仪的吸收与激发效应

对一给定元素的某一吸收限的短波侧,质量衰减系数pm迅速地随着波长λ的增加而变大,根据式μm=Kλm及勒鲁的研究结果,对于若干主要谱系,在0.18-10A的波段,λ的幂值m变化在2.1~2.8之间。因此越是接近吸收限短波侧的谱线,所受的吸收或衰减就越大。而且,对一谱系,由于km随的变化是连续的,故在样品中发生的吸收与激发效应亦随谱线的波长而连续地变化,直到波长增加到某一吸收限,质量衰减系数pm才发生陡然的变化。 在吸收和激发效应中,最主要的是,原级入射线进入样品时所受到的吸收效应和荧光谱线出射时受样品的吸收或分析元素受其他元素的继发效应。对于化学组成不同的样品,当分析元素含量相同时,吸收和激发效应表现在对同一分析线的强度影响上,首先是由于样品对原级入射线和分析线的联合质量衰减系数的差异造成的。......阅读全文

X射线荧光光谱仪的吸收与激发效应

  对一给定元素的某一吸收限的短波侧,质量衰减系数pm迅速地随着波长λ的增加而变大,根据式μm=Kλm及勒鲁的研究结果,对于若干主要谱系,在0.18-10A的波段,λ的幂值m变化在2.1~2.8之间。因此越是接近吸收限短波侧的谱线,所受的吸收或衰减就越大。而且,对一谱系,由于km随的变化是连续的,故

X射线荧光光谱仪的吸收与激发(增强)效应

  ① 原级入射线进人样品时所受的吸收效应;  ② 荧光谱线出射时受样品的吸收或分析元素受样品中其它元素的激发效应;  ③ 第三级的激发效应。  以上各级吸收和激发效应,都随着样品基体化学组成的差异而发生变化。

X射线荧光光谱仪X射线吸收的介绍

  当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。  当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律:  式中,μ为质量衰减系数;ρ为样

X射线荧光光谱仪的表面效应

  样品表面状态和荧光谱线强度的关系不可忽视。当样品是由磨料、锯料或锋料制成大小一定的块状物体时,其表面必须经过适当的磨平或抛光。  荧光谱线强度不仅与样品的表面构造和纹沟的性质有关,而且也受样品位置、纹沟和进出X射线方向影响。对于后者,可以通过测量过程中同时转动样品减少或消除,如不能转动则应使纹沟

质子激发X射线荧光分析的X-射线谱

  在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽

X射线光谱仪的吸收效应和增强效应

  吸收效应和增强效应,曲线a表示氢元素中重元素的X射线和含量的关系,种元素的分析光谱受轻元素发生的吸收效应较小,所以在低含量范围,重元素的X射线强度随含量的增加而迅速上升,重元素含量很高以后曲线的斜率就变小了;曲线b时分析由原子序数相近的元素所构成的样品时所得到曲线,待测元素自身吸收稍大于其他共存

X射线荧光光谱仪的粒度效应介绍

  在荧光强度的推导公式中,假设的样品都是均匀且表面光滑的。但是实际上只有液体样品或经过充分抛光的纯金属或某些合金样品才能满足这些条件。对于其他固体样品特别是粉末样品常常存在着样品不均匀及粒度效应和表面效应。  均匀样品,对于固体粉末样品来说是指粉末的粒度和化学组成完全相同的样品。实验表明这种样品在

质子激发X射线荧光分析的简介

  利用原子受质子激发后产生的特征 X射线的能量和强度来进行物质定性和定量分析的方法。简称质子 X射线荧光分析,英文缩写为PIXE。质子X 射线荧光分析是20 世纪70 年代发展起来的一种多元素微量分析技术,其分析灵敏度可达10-16 克,相对灵敏度可达10-6~10-7 克/克。原则上可分析原子序

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

x射线荧光和x射线衍射的区别在于前者是对材料进行成份分析的仪器,而后者则主要是对材料进行微观结构分析以便确定其物理性状的设备。

X射线衍射仪与X射线荧光光谱仪的区别

x射线荧光和x射线衍射的区别在于前者是对材料进行成份分析的仪器,而后者则主要是对材料进行微观结构分析以便确定其物理性状的设备。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线荧光光谱仪的基体效应的概述

  在X射线荧光分析中,随着高度精密、稳定仪器的出现与发展,基体效应已成为元素定量测定中分析误差的主要来源。所谓基体效应,全面说来,是指样品的基本化学组成和物理-化学状态的变化,对分析射线强度所造成的影响。样品的基本化学组成,通常指包括分析元素在内的主量元素;样品的物理-化学状态,则应包括固体粉末的

X射线荧光分析的基体效应

   试样内部产生的X荧光射线,在到达试样表面前,走位的共存元素会产生吸收(吸收效应)。同事还会产生X荧光射线并对共存元素二次激发(二次激发效应)。因此即使含量一样,由于共存元素的不同,荧光射线强度也会有所差别,这就是基体效应。在定量分析时,尤其要注意基体效应的影响。

激发X射线荧光分析法的概念

当α 、β、γ或X射线作用于样品时,由于库仑散射,轨道电子吸收其部分动能,使原子处于激发状态。由激发态返回基态时发射特征X射线,根据此特征X射线的能量和强度来分析元素的种类和含量。其灵敏度很高,用途很广。

简述质子激发X射线荧光分析的原理

  基本原理是用高速质子照射样品,质子与样品中的原子发生库仑散射。原子内层电子按一定几率被撞出内壳层,留下空穴,较外层电子向这个空穴跃迁时发射出特征X 射线。用探测仪器探测和记录这些特征X 射线谱,根据特征X 射线的能量可定性地判断样品中所含元素的种类,根据谱线的强度可计算出所测元素的含量。

质子激发X射线荧光分析的实验装置

  质子X 射线荧光分析的主要实验装置包括:  ①加速器,一般用质子静电加速器,选用能量为1~3 兆电子伏的质子,在此能量范围内,质子激发X射线的产额高,灵敏度高;质子的能量再高时,将会引起许多核反应,使本底增大;能量再低时,质子的穿透能力下降,只能用于表面分析。②靶室(或称散射室),是分析样品放置

X射线荧光光谱仪X射线的衍射介绍

  相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。  其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。  另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

概述X射线荧光光谱仪X射线的产生

  根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。  1、连续谱线  连续光谱是由高能的带电粒子撞击金属靶面时受

X射线荧光光谱仪的其它物理化学效应

  ① 样品的均匀性、粒度和表面效应;  ② 化学态的变化对分析线强度的影响。  以上两类物理-化学效应,尤其是前者,时常也会给分析线强度的测量带来重大误差。

X射线荧光光谱仪的维护与保养

X射线荧光光谱仪属于大型分析测试仪器,对周围环境要求比较高。实验室内要保证恒温、恒湿,避免酸性气体存在;要保持清洁,避免震动;要保证电源稳定,并配有独立的地线。定期对X射线荧光光谱仪各组成部分,如高压X射线光管、检测晶体、探测器、真空系统等进行检查、维护和保养,保证仪器处于最佳的运行状态。

X射线荧光光谱仪的维护与保养

X射线荧光光谱仪属于大型分析测试仪器,对周围环境要求比较高。实验室内要保证恒温、恒湿,避免酸性气体存在;要保持清洁,避免震动;要保证电源稳定,并配有独立的地线。定期对X射线荧光光谱仪各组成部分,如高压X射线光管、检测晶体、探测器、真空系统等进行检查、维护和保养,保证仪器处于最佳的运行状态。

X射线荧光光谱仪的维护与保养

X射线荧光光谱仪属于大型分析测试仪器,对周围环境要求比较高。实验室内要保证恒温、恒湿,避免酸性气体存在;要保持清洁,避免震动;要保证电源稳定,并配有独立的地线。定期对X射线荧光光谱仪各组成部分,如高压X射线光管、检测晶体、探测器、真空系统等进行检查、维护和保养,保证仪器处于最佳的运行状态。

X-射线荧光光谱仪

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图