基本参数法于X射线荧光光谱分析中的应用
基本参数法是XRF定量分析的有效算法,其将X射线荧光物理学明确的原理基本参数和数学模型化,在没有或少标准样品的情况下实现对未知样品的定量分析,通常的XRF仅考虑了谱线分数、荧光产额以及部分探测器效应,而对于入射射线的强度分布、谱线重叠、背景扣除等考虑不足,因此达不到精确定量分析的目的。 快速基本参数法(Fast FP)从X射线入射谱、X射线与物质相互作用、探测器各种效应等完全建立物理学明确的数学模型,通过大量运算,反复迭代采集谱与计算谱,达到对未知样品精确定量分析的目的。 通常的XRF采用影响系数法进行定量分析,由于元素之间的吸收增强效应以及基体效应,因此给定量分析带来困难,在分析的目标样品元素种类多且含量范围宽的情况下,对标准样品依赖和选择变得十分困难,也就是要打破元素含量的相关性,采用大量标准样品取得元素间的影响系数,在缺少标准样品的情况下,几乎不可能,或者带来定量结果的偏差。......阅读全文
基本参数法于X射线荧光光谱分析中的应用
基本参数法是XRF定量分析的有效算法,其将X射线荧光物理学明确的原理基本参数和数学模型化,在没有或少标准样品的情况下实现对未知样品的定量分析,通常的XRF仅考虑了谱线分数、荧光产额以及部分探测器效应,而对于入射射线的强度分布、谱线重叠、背景扣除等考虑不足,因此达不到精确定量分析的目的。 快速基
X射线荧光光谱分析法
利用原级 X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。 简史 20世纪20年代瑞典的G.C.de赫维西和R.格洛克尔曾先后试图应用此法从事定量分析,但由于当时记录
X射线荧光光谱分析法的应用领域
X射线荧光分析法可用于冶金、地质、化工、机械、石油、建材等工业部门,以及物理、化学、生物、地学、环境科学、考古学等。还可用于测定涂层和金属薄膜的厚度和组成以及动态分析等。在常规分析和某些特殊分析方面,包括工业上的开环单机控制和闭环联机控制,本法均能发挥重大作用。分析范围包括原子序数Z≥3(锂)的
X射线荧光光谱仪基本参数法介绍
针对经验系数法对标准样品的严重依赖和适用性窄的问题,基本参数法(FP)越来越受到重视。 基本参数法是对X射线的产生、滤波、X射线与物质的作用、探测器的各种效应,根据已经掌握的数据库和物理理论进行计算,将计算谱与实测的谱,进行对比,通过迭代过程不断逼近真实含量。以迭代的收敛的结果,作为定量结果。
X射线荧光分析法的应用
X射线荧光分析法用于物质成分分析,检出限一般可达3-10~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用
X射线荧光光谱分析法的特点
(1)分析速度快。 (2)X射线荧光光谱跟样品的化学结合状态及物理状态无关。 (3)非破坏分析。 (4)X射线荧光分析是一种物理分析方法,所以对化学性质上属于同一族的元素也能进行分析。 (5)分析精密度高。 (6) X射线光谱比发射光谱简单,故易于解析。 (7)制样简单。 (8)X射线
X射线荧光光谱分析法的简介
X射线荧光光谱分析法,利用原级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。 [1] 在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。
X射线荧光光谱仪的基本参数法分析介绍
针对经验系数法对标准样品的严重依赖和适用性窄的问题,基本参数法(FP)越来越受到重视。 基本参数法是对X射线的产生、滤波、X射线与物质的作用、探测器的各种效应,根据已经掌握的数据库和物理理论进行计算,将计算谱与实测的谱,进行对比,通过迭代过程不断逼近真实含量。以迭代的收敛的结果,作为定量结果。
X射线荧光分析法的应用特点
X射线荧光分析法用于物质成分分析,检出限一般可达3-10~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原
X射线荧光光谱法的应用
质成分分析 ①定性和半定量分析具有谱线简单、不破坏样品、基体的吸收和增强效应较易克服、操作简便、测定迅速等优点,较适合于作野外和现场分析,而且一般使用便携式X射线荧光分析仪,即可达到目的。如在室内使用X射线能谱仪,则可一次在荧光屏上显示出全谱,对物质的主次成分一目了然,有其独到之处。 ② 定量
X射线荧光光谱分析技术的重要应用
X射线荧光光谱分析技术属于一种能够实现快速分析的无损检测技术,新型、成本更低的X射线光谱仪更容易在被检测材料或者组件的整个生命周期内进行多元测量和验证。利用摩擦效应产生X射线的低成本、移动型X射线荧光光谱仪将会和原位检测或者实验室检测实现互补。 对于质量管理部门、冶金实验室、机械工厂、金属加工
X-射线荧光光谱分析
本文评述了我国在2005年至2006年X射线荧光光谱,包括粒子激发的X射线光谱的发展和应用,内容包括仪器研制、激发源、探测器、软件、仪器改造、仪器维护和维修、样品制备技术、分析方法研究和应用。 更多还原
X射线荧光光谱分析
X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速
X射线荧光光谱分析
X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速
X射线荧光光谱分析
XRF的原理:X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位:nm)描述。X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足够能量的X射线照
X射线荧光光谱分析
X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速
X射线荧光光谱分析技术在质量检测中的应用探讨
简要介绍了X射线荧光光谱分析技术原理、光谱仪类型及分析方法,阐述了X射线荧光光谱分析技术在质量检测中的应用,对X射线荧光光谱检测应用中仪器选型配置、样品制备方法选择、定量分析技术进行了探讨。 更多还原
X射线荧光光谱法在医药分析中的应用
药品安全与国计民生息息相关,各种化学和仪器分析方法在解决药品研发和质量控制中发挥着重要作用。ICH指导委员会于2009年10月批准了Q3D金属杂质课题。这一新指导原则建议对于药品中的金属杂质进行定性和定量限制。药品中的元素杂质可能有多个来源:可以在合成中有意添加,或可能作为污染物存在(例如,通过与生
X射线荧光光谱分析仪应用实践
介绍了X荧光分析仪在炼铁厂的应用情况,以大量的试验为基础,阐述了X荧光光谱分析仪粉末压片法的规范操作及烧结矿和混匀矿在X荧光光谱分析仪上的检测应用,保证仪器的稳定性和分析数据的准确性的前提下,为生产提供准确、可靠的数据。 更多还原
X射线荧光光谱仪基本参数
1仪器测试范围:从硫S-铀U之间的元素2样品种类:固体、液体、粉末;3最低检出限:≤2ppm成分分析:0.01%--99.99%4测试时间:60s-200s(软件自动调整)5摄像定位系统:500万真像素高清定位系统;6X射线光管:窗口材料:金属铍使用寿命:大于20000小时7探测器:生产厂家:美国A
水泥中铬元素的X射线荧光光谱分析方法研究及其应用
本课题的目的是利用X射线荧光分析方法建立一套水泥中总铬、水溶性六价铬离子的测试方法,并利用水泥企业化验室现有的条件替代标准方法完成测试工作。本方法与标准方法相比具有测定速度快、操作简单、试料量少的优点,为研究水泥中可溶性六价铬离子的来源及存在形态提供了参考依据,对于研究降低水泥中水溶性六价铬离子含量
水泥中铬元素的X射线荧光光谱分析方法研究及其应用
本课题的目的是利用X射线荧光分析方法建立一套水泥中总铬、水溶性六价铬离子的测试方法,并利用水泥企业化验室现有的条件替代标准方法完成测试工作。本方法与标准方法相比具有测定速度快、操作简单、试料量少的优点,为研究水泥中可溶性六价铬离子的来源及存在形态提供了参考依据,对于研究降低水泥中水溶性六价铬离子含量
关于X射线荧光光谱分析法的简史介绍
20世纪20年代瑞典的G.C.de赫维西和R.格洛克尔曾先后试图应用此法从事定量分析,但由于当时记录和探测仪器水平的限制,无法实现。 40年代末,随着核物理探测器的改进,各种计数器相继应用在X射线的探测上,此法的实际应用才成为现实。 1948年H.弗里德曼和L.S.伯克斯制成了一台波长色散的
X射线荧光光谱分析概述
X射线荧光光谱分析(X Ray Fluorescence,XRF)是固体物质成分分析的常规检测手段,也是一种重要的表面/表层分析方法。由于整体技术和分光晶体研制发展所限,早期的X射线荧光光谱仪检测范围较窄,灵敏度较差。随着测角仪、计数器、光谱室温度稳定等新技术的进步,使现代X射线荧光光谱仪的测量精密
X射线荧光光谱分析简介
一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。 然后,仪器
X射线荧光光谱分析(-XRF)
XRF:X射线荧光光谱分析(X Ray Fluorescence) 的X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位:nm)描述。X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自
X射线荧光分析法
原子发射与原子吸收光谱法是利用原子的价电子激发产生的特征光谱及其强度进行分析。 X- 射线荧光分析法则是利用原子内层电子的跃迁来进行分析。 X 射线是伦琴于 1895 年发现的一种电磁辐射,其波长为 0.01 ~ 10nm。在真空管内用电加热灯丝(钨丝阴极)产生大量热电子,热电子被高压(万伏)加速撞
X射线荧光光谱分析的简介
利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪
X射线荧光光谱分析仪(XFR)的应用简介
X射线荧光光谱分析仪检测过程制样简单无需复杂的化学预处理方式,是最基本的制样方法,检测方法快速简便,经济且不会造成其他污染,仪器检测的优势得到了充分的发挥和展现,除了矿石检测,XRF在在土壤和环境样品分析中的应用也愈发重要,还应用于钢铁、冶金、水泥、商检等各个领域,而且还在向更细化的研究领域逐步
X射线荧光光谱法在化学分析中的应用
主要使用X射线束激发荧光辐射,第一次是在1928年由格洛克尔和施雷伯提出的。到了现在,该方法作为非破坏性分析技术,并作为过程控制的工具,广泛应用于采掘和加工工业。原则上,最轻的元素,可分析出铍(z=4),但由于仪器的局限性和轻元素的低X射线产量,往往难以量化,所以针对能量分散式的X射线荧光光谱仪,可