X射线荧光光谱仪的基本参数法分析介绍
针对经验系数法对标准样品的严重依赖和适用性窄的问题,基本参数法(FP)越来越受到重视。 基本参数法是对X射线的产生、滤波、X射线与物质的作用、探测器的各种效应,根据已经掌握的数据库和物理理论进行计算,将计算谱与实测的谱,进行对比,通过迭代过程不断逼近真实含量。以迭代的收敛的结果,作为定量结果。因此基本参数法大大降低了对标准样品的依赖,其目标是进行无标定量分析。 一句话,基本参数法将X射线荧光光谱整个物理学过程,采用基本参数库和一系列数学模型进行描述,利用计算机软件技术,实现快速实时计算与迭代,直接得到样品中元素种类和含量。众所周知,绝大多数分析仪器是采用物理学原理实现化学物质的分析,对物质的定性和定量均需要标准物质建立仪器信号强度(或类别)与标准物质含量(或类别)之间的关系曲线,进而实现对目标样品的定性定量分析。而X射线荧光光谱领域借助基本参数法以及一些列数学模型,通过物理学明确的理论计算,不借助标准物质即可得到目标样品......阅读全文
X射线荧光光谱仪的基本参数法分析介绍
针对经验系数法对标准样品的严重依赖和适用性窄的问题,基本参数法(FP)越来越受到重视。 基本参数法是对X射线的产生、滤波、X射线与物质的作用、探测器的各种效应,根据已经掌握的数据库和物理理论进行计算,将计算谱与实测的谱,进行对比,通过迭代过程不断逼近真实含量。以迭代的收敛的结果,作为定量结果。
X射线荧光光谱仪基本参数法介绍
针对经验系数法对标准样品的严重依赖和适用性窄的问题,基本参数法(FP)越来越受到重视。 基本参数法是对X射线的产生、滤波、X射线与物质的作用、探测器的各种效应,根据已经掌握的数据库和物理理论进行计算,将计算谱与实测的谱,进行对比,通过迭代过程不断逼近真实含量。以迭代的收敛的结果,作为定量结果。
X射线荧光光谱仪基本参数
1仪器测试范围:从硫S-铀U之间的元素2样品种类:固体、液体、粉末;3最低检出限:≤2ppm成分分析:0.01%--99.99%4测试时间:60s-200s(软件自动调整)5摄像定位系统:500万真像素高清定位系统;6X射线光管:窗口材料:金属铍使用寿命:大于20000小时7探测器:生产厂家:美国A
X射线荧光分析法
原子发射与原子吸收光谱法是利用原子的价电子激发产生的特征光谱及其强度进行分析。 X- 射线荧光分析法则是利用原子内层电子的跃迁来进行分析。 X 射线是伦琴于 1895 年发现的一种电磁辐射,其波长为 0.01 ~ 10nm。在真空管内用电加热灯丝(钨丝阴极)产生大量热电子,热电子被高压(万伏)加速撞
X射线荧光光谱仪X射线吸收的介绍
当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。 当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律: 式中,μ为质量衰减系数;ρ为样
X射线荧光光谱仪X射线散射的介绍
除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。 相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原
X射线荧光光谱仪X射线的衍射介绍
相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。 其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。 另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体
X射线荧光光谱仪的分析方法介绍
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点,分为波长色散、能量色散、非色散X荧光、全反射X荧光。分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。X射线荧光光谱法有如下特点: 分析的元素范围广,从4Be到92U均可测定;荧光X射线谱线简单,相互干扰少,样品不必分离,分析方
X射线荧光光谱仪的分析方法介绍
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点,分为波长色散、能量色散、非色散X荧光、全反射X荧光。分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。X射线荧光光谱法有如下特点: 分析的元素范围广,从4Be到92U均可测定;荧光X射线谱线简单,相互干扰少,样品不必分离,分析方
X射线荧光分析的介绍
X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。 1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir
X射线荧光分析法简介
X射线荧光分析法(X-ray fluorescence analysis),是对固体或液体试样进行化学分析的一种非破坏性物理分析法。试样在强X射线束照射下产生的荧光X射线被已知高点阵间距的晶体衍射而取得荧光X射线光谱。这种谱线的波长是试样中元素定性分析的依据;谱线的强度是定量分析的依据。
基本参数法于X射线荧光光谱分析中的应用
基本参数法是XRF定量分析的有效算法,其将X射线荧光物理学明确的原理基本参数和数学模型化,在没有或少标准样品的情况下实现对未知样品的定量分析,通常的XRF仅考虑了谱线分数、荧光产额以及部分探测器效应,而对于入射射线的强度分布、谱线重叠、背景扣除等考虑不足,因此达不到精确定量分析的目的。 快速基
X射线荧光分析法的应用
X射线荧光分析法用于物质成分分析,检出限一般可达3-10~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用
X射线荧光分析法的简介
中文名称X射线荧光分析法英文名称X-ray fluorescence analysis定 义对固体或液体试样进行化学分析的一种非破坏性物理分析法。试样在强X射线束照射下产生的荧光X射线被已知高点阵间距的晶体衍射而取得荧光X射线光谱。这种谱线的波长是试样中元素定性分析的依据;谱线的强度是定量分析的依
X射线荧光光谱仪X射线防护系统的故障分析
为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分: 1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合
X射线荧光光谱仪理论影响系数法介绍
对多数类型的样品,总有一些XRF无法探测到的元素(H-F)存在,往往这些超轻元素在样品中占有一定的浓度,是样品中基体组成部分,而其它元素的峰强度与基体组成直接相关,X射线荧光分析数据处理技术与基体校正数学模型的研究是该领域的重点,这一领域研究主要围绕着基本参数法和理论影响系数法展开。 理论影响
X射线荧光分析技术介绍
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。 在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其
X射线荧光光谱仪原理分析
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集
X射线荧光法的相关介绍
X射线荧光法是用,照射待测样品,使受激元素产生二次特征X射线(即荧光),使用X射线荧光仪测量并记录样品中待测元素的特征X射线照射量率,从而确定样品的成分和目标元素含量的方法。 方法的特点是操作简单,速度快,可以进行原位测量,在现场获得目标元素的含量;划分矿与非矿的界限,代替或部分代替刻槽取样。
X射线荧光光谱仪X射线防护系统故障分析
为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分: 1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合上
X射线荧光分析法的基本信息介绍
X射线荧光分析法(X-ray fluorescence analysis),是对固体或液体试样进行化学分析的一种非破坏性物理分析法。试样在强X射线束照射下产生的荧光X射线被已知高点阵间距的晶体衍射而取得荧光X射线光谱。这种谱线的波长是试样中元素定性分析的依据;谱线的强度是定量分析的依据。
X射线荧光光谱仪中X射线的由来和性质分析
X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所
X射线荧光分析的特点介绍
1.分析速度快,通常每个元素分析测量时间在2~lOOs之内即可完成。 2.非破坏性,X射线荧光分析对样品是非破坏性测定,使得其在一些特殊测试如考古、文物等贵重物品的测试中独显优势 3.分析样品范围广,可以对元素周期表上的多种元素进行分析,并可直接测试各种形态的样品。 4.分析样品浓度范围宽
X射线荧光分析的基本介绍
X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。 1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir
X射线荧光分析的相关介绍
确定物质中微量元素的种类和含量的一种方法。它用外界辐射激发待分析样品中的原子,使原子发出标识X射线(荧光),通过测量这些标识X射线的能量和强度来确定物质中微量元素的种类和含量。根据激发源的不同,可分成带电粒子激发X荧光分析,电磁辐射激发X荧光分析和电子激发X荧光分析。
X射线荧光分析法的未来展望
X射线荧光分析法同其他分析技术一样,不是完美无缺的。在物质成分分析中,它对一些最轻元素(Z≤8)的测定还不完全成熟,只能是属于初期应用的阶段。常规分析中某些元素的测定灵敏度不如原子发射光谱法高(采用同步辐射和质子激发的X射线荧光分析除外),根据各个工业部门生产自动化的要求(例如选矿流程中的自动控
X射线荧光光谱法的分析
X射线荧光光谱法---能量色散 利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发
X射线荧光分析法的应用特点
X射线荧光分析法用于物质成分分析,检出限一般可达3-10~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原
激发X射线荧光分析法的概念
当α 、β、γ或X射线作用于样品时,由于库仑散射,轨道电子吸收其部分动能,使原子处于激发状态。由激发态返回基态时发射特征X射线,根据此特征X射线的能量和强度来分析元素的种类和含量。其灵敏度很高,用途很广。
概述X射线荧光光谱仪X射线的产生
根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。 1、连续谱线 连续光谱是由高能的带电粒子撞击金属靶面时受