X射线荧光分析技术的应用介绍

随着仪器技术和理论方法的发展,X射线荧光分析法的应用范同越来越广。在物质的成分分析上,在冶金、地质、化工、机械、石油、建筑材料等工业部门,农业和医药卫生,以及物理、化学、生物、地学、环境、天文及考古等研究部门都得到了广泛的应用:有效地用于测定薄膜的厚度和组成.如冶金镀层或金属薄片的厚度,金属腐蚀、感光材料、磁性录音带薄膜厚度和组成:可用于动态分析上,测定某一体系在物理化学作用过程中组成的变化情况.如相变产生的金属问的扩散,固体从溶液中沉淀的速度,固体在同体中的扩散和同体在溶液中溶解的速度等。......阅读全文

X射线荧光分析技术的应用介绍

  随着仪器技术和理论方法的发展,X射线荧光分析法的应用范同越来越广。在物质的成分分析上,在冶金、地质、化工、机械、石油、建筑材料等工业部门,农业和医药卫生,以及物理、化学、生物、地学、环境、天文及考古等研究部门都得到了广泛的应用:有效地用于测定薄膜的厚度和组成.如冶金镀层或金属薄片的厚度,金属腐蚀

X射线荧光分析技术的应用

   X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。   在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;

X射线荧光分析技术的应用

X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其他分析方法

X射线荧光分析技术的应用

   X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。  在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其

X射线荧光分析技术介绍

   X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。  在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其

X射线荧光分析技术相关介绍

  X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。  X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的

关于X射线荧光分析技术应用的误区

  X射线荧光分析作为工业分析技术经历了几十年的发展历程,在水泥制造业已得到广泛应用。我国水泥工业中X射线荧光分析技术的应用和发展,基本上是在近25 年中实现的。上个世纪七十年代末八十年代初,一方面随着大量新型干法水泥生产线的成套引进,大型X荧光光谱仪开始出现在我国水泥工业,另一方面,随着钙铁 分析

X射线荧光分析技术的相关介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法。  X射线荧光分析又称X射线次级发射光谱分析。本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。1948年由H.费里德曼(H.Friedmann)和L.S

X射线荧光分析技术的特点介绍

  1.分析速度快,通常每个元素分析测量时间在2~lOOs之内即可完成。  2.非破坏性,X射线荧光分析对样品是非破坏性测定,使得其在一些特殊测试如考古、文物等贵重物品的测试中独显优势  3.分析样品范围广,可以对元素周期表上的多种元素进行分析,并可直接测试各种形态的样品。  4.分析样品浓度范围宽

X射线荧光应用及分析

a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。    b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。    c) 根据各元素的特征X射线的强

X射线荧光应用及分析

  a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。  b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。  c) 根据各元素的特征X射线的强度,

X射线荧光应用及分析

a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。c) 根据各元素的特征X射线的强度,也可以获得各

X射线荧光分析技术应用的原理分析及误区

 X射线荧光分析作为工业分析技术经历了几十年的发展历程,在水泥制造业已得到广泛应用。我国水泥工业中X射线荧光分析技术的应用和发展,基本上是在近25年中实现的。上个世纪七十年代末八十年代初,一方面随着大量新型干法水泥生产线的成套引进,大型X荧光光谱仪开始出现在我国水泥工业,另一方面,随着钙铁分析仪的研

简述-X-射线荧光分析技术

  X 射线荧光分析技术(XRF)作为一种快速分析手段,为我国的相关部门提供了一种可行的、低成本的并且及时的检测、筛选和控制有害元素含量的有效途径。相对于其他分析方法(例如发射光谱、吸收光谱、分光光度计、色谱质谱等),XRF 具有无需对样品进行特别的化学处理,快速、方便、测量成本低等明显优势,特别适

X射线荧光分析技术简介

  X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级x射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级x射线)而进行物质成分分析和化学形态研究的方法。

X射线荧光分析技术分类

  X射线荧光分析技术可以分为两大类型:波长色散X射线荧光分析(WDXRF)和能量色散X射线荧光分析(EDXRF);而能量色散型又根据探测器的类型分为(Si-PIN)型和SDD型。在不同的应用条件下,这几种类型的技术各有其突出的特点。目前,X射线荧光分析不仅材料科学、生命科学、环境科学等普遍采用的一

简述X射线荧光分析的应用

  随着仪器技术和理论方法的发展,X射线荧光分析法的应用范同越来越广。在物质的成分分析上,在冶金、地质、化工、机械、石油、建筑材料等工业部门,农业和医药卫生,以及物理、化学、生物、地学、环境、天文及考古等研究部门都得到了广泛的应用:有效地用于测定薄膜的厚度和组成.如冶金镀层或金属薄片的厚度,金属腐蚀

X射线荧光分析的介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。  1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir

X射线荧光分析的技术简介

  X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。  X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的

新型X射线荧光技术的的应用

  第一个受益于这种新型X射线荧光技术的无疑是制造业、机械加工、金属加工、废品回收以及钢铁回收等行业中的质量管理部门,对于这几个行业,几乎所有人都会非常关心他们产品的质量问题。此外,一些先前因为成本高昂而从未考虑过使用X射线光谱分析技术的领域也能受益于此并开始使用XRF,包括航空航天、汽车和医疗仪器

X射线荧光分析的原理及应用

 X射线荧光分析(XRF)——是对任何种类的样品进行元素分析的好分析技术,无论必需分析的样品是液体、固体还是粉末。XRF可以将高的准确度和精密度与简单和快速的样品准备结合,对铍 (Be) 到铀 (U) 的元素喜迁分析,浓度范围从 100 % 到低至亚 ppm 级。   作为一种确定各种材料化学组成的

X射线荧光分析法的应用

  X射线荧光分析法用于物质成分分析,检出限一般可达3-10~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用

X射线荧光分析的原理及应用

    X射线荧光分析(XRF)——是对任何种类的样品进行元素分析的好分析技术,无论必需分析的样品是液体、固体还是粉末。XRF可以将高的准确度和精密度与简单和快速的样品准备结合,对铍 (Be) 到铀 (U) 的元素喜迁分析,浓度范围从 100 % 到低至亚 ppm 级。   作为一种确定各种材料

X射线荧光分析的基本介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。  1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir

X射线荧光分析的相关介绍

  确定物质中微量元素的种类和含量的一种方法。它用外界辐射激发待分析样品中的原子,使原子发出标识X射线(荧光),通过测量这些标识X射线的能量和强度来确定物质中微量元素的种类和含量。根据激发源的不同,可分成带电粒子激发X荧光分析,电磁辐射激发X荧光分析和电子激发X荧光分析。

X射线荧光分析的特点介绍

  1.分析速度快,通常每个元素分析测量时间在2~lOOs之内即可完成。  2.非破坏性,X射线荧光分析对样品是非破坏性测定,使得其在一些特殊测试如考古、文物等贵重物品的测试中独显优势  3.分析样品范围广,可以对元素周期表上的多种元素进行分析,并可直接测试各种形态的样品。  4.分析样品浓度范围宽

X射线荧光光谱分析技术的重要应用

  X射线荧光光谱分析技术属于一种能够实现快速分析的无损检测技术,新型、成本更低的X射线光谱仪更容易在被检测材料或者组件的整个生命周期内进行多元测量和验证。利用摩擦效应产生X射线的低成本、移动型X射线荧光光谱仪将会和原位检测或者实验室检测实现互补。  对于质量管理部门、冶金实验室、机械工厂、金属加工

x射线荧光光谱的微区分析技术介绍

  铜矿物在自然界存在形式多样,有原生带次生富集带和氧化带等,共生矿物和伴生矿物众多,各类矿物均存在类质同象或者镜下光学特征相似的现象,传统的岩矿鉴定方法利用偏光、反光显微镜或实体显微镜等设备难以鉴别,对于此类矿物的鉴别需要借助化学分析方法或微区分析技术。  微区分析技术(电子探针、同步辐射、全反射

X射线荧光仪器的技术优点介绍

  利用XRF,元素周期表中绝大部分元素均可测量。作为一种分析手段,XRF具有其优越的地方:分析速度快、非破坏分析、分析精密度高、制样简单等。波长色散和能量色散XRF光谱仪对元素的检测范围为10-5%~100%,对水样的分析可达10-9数量级;全反射XRF的检测限已达到10-9~10-12g。同时也

X射线荧光分析法的应用特点

X射线荧光分析法用于物质成分分析,检出限一般可达3-10~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原