关于胶原纤维的结构介绍
Ⅰ型胶原的原纤维平行排列成较粗大的束,成为光镜下可见的胶原纤维,抗张强度超过钢筋。其三股螺旋由二条α1(Ⅰ)链及一条α2(Ⅰ)链构成。每条α链约含1050个氨基酸残基,由重复的Gly-X-Y序列构成。X常为Pro(脯氨酸),Y常为羟脯氨酸或羟赖氨酸残基。重复的Gly-X-Y序列使α链卷曲为左手螺旋,每圈含3个氨基酸残基。三股这样的螺旋再相互盘绕成右手超螺旋,即原胶原。 原胶原分子间通过侧向共价交联,相互呈阶梯式有序排列聚合成直径50~200nm、长150nm至数微米的原纤维,在电镜下可见间隔67nm的横纹。胶原原纤维中的交联键是由侧向相邻的赖氨酸或羟赖氨酸残基氧化后所产生的两个醛基间进行缩合而形成的。 原胶原共价交联后成为具有抗张强度的不溶性胶原。胚胎及新生儿的胶原因缺乏分子间的交联而易于抽提。随年龄增长,交联日益增多,皮肤、血管及各种组织变得僵硬,成为老化的一个重要特征。 人α1(Ⅰ)链的基因含51个外显子,因而基因......阅读全文
关于胶原纤维的结构介绍
Ⅰ型胶原的原纤维平行排列成较粗大的束,成为光镜下可见的胶原纤维,抗张强度超过钢筋。其三股螺旋由二条α1(Ⅰ)链及一条α2(Ⅰ)链构成。每条α链约含1050个氨基酸残基,由重复的Gly-X-Y序列构成。X常为Pro(脯氨酸),Y常为羟脯氨酸或羟赖氨酸残基。重复的Gly-X-Y序列使α链卷曲为左手螺
关于胶原纤维的基本介绍
胶原纤维是主要含有胶原蛋白,氨基酸有甘氨酸、脯氨酸和羟脯氨酸等的纤维组合物。胶原纤维是三种纤维中分布最广泛,含量最多的一种纤维。广泛分布于各脏器内,在皮肤、巩膜和肌腱最为丰富。胶原纤维染色主要用于和肌纤维的鉴别。 胶原纤维是真皮中的主要成分,占真皮全部纤维质量的95%-98%.新鲜的胶原纤维呈
关于胶原纤维的简介
胶原纤维(collagenous fiber) 在三种纤维中数量最多,新鲜时呈白色,有光泽,故又名白纤维。在HE染色切片中呈嗜酸性,粗细不等,直径0.5~20um,呈波浪形,有分支并交织成网,胶原纤维的生化成分为I型胶原蛋白。胶原蛋白(collagen)由成纤维细胞分泌,于细胞外聚合成胶原原纤维
关于胶原纤维染色的基本信息介绍
凡是间叶组织细胞都可产生网织纤维,也可产生胶原纤维,纤维母细胞是产生胶原纤维的主要细胞。胶原纤维是结缔组织中的主要纤维,是结缔组织中起支持作用的重要部分,具有一定的韧性和坚固性,能抵抗一定的牵引力而不致撕裂。胶原纤维是原胶原互相错开1/4平行排列交联成胶原原纤维,胶原原纤维再聚合成较宽的结构。按
关于骨胶原纤维的基本信息介绍
人体的胶原纤维大约50%在骨组织中,占骨组织有机细胞间质的90%。构成骨胶原纤维的蛋白质为Ⅰ型胶原蛋白。在不脱钙的骨超薄切片上,可见羟磷灰石结晶沿胶原纤维长轴分布。骨胶原纤维的抗压性和弹性较差,羟磷灰石结晶易碎但两者结合在一起,则具有很大的结构强度,从而使骨组织获得坚强的机械性能。 [1] 在
关于骨胶原纤维的作用概述
分布在体内各个部位的骨胶原,有着各种不同功能的骨胶原纤维。例如:键,连结着骨和肌肉,担负着传接运动的作用,构造中具有很强的伸张力。皮肤具有结实并保持柔软象织布一样构造的性质。特别是真皮层约有70%是骨胶原,显示的是肌肉伸张弹险和健康美。另外,眼睛中的角膜里也存在着骨胶原纤维。象胶合板一样层状且具
胶原纤维的胶原蛋白的染色
胶原纤维在HE染色法被染成粉红色,除此之外,它还可以用一些阴离子的染料来进行染色,如用淡绿可把它们染为绿色,用甲苯胺蓝可将其染为蓝色,在网状纤维染色中,如不加以处理,它又可被染为棕黄色。常用的特殊染色法有Van Gieson.Masson和Mallary等方法。在免疫细胞化学染色中,胶原纤维由于含的
关于法氏囊的结构介绍
法氏囊采用石蜡切片、HE和免疫组织化学染色, 分别对健康10月龄非洲鸵鸟和45日龄固始鸡法氏囊解剖学和组织学结构进行观察和分析。非洲鸵鸟法氏囊覆盖于泄殖道和粪道后段的背侧,呈圆形囊状穹窿, 不形成真正的囊, 没有蒂。鸵鸟法氏囊黏膜面密集地分布着肉眼可见的小米粒状淋巴滤泡。显微镜下, 鸵鸟法氏囊淋
关于β螺旋的结构介绍
第一个被发现的β螺旋结构是在酶的果胶酸裂解酶中,其中包含一七转螺旋,达到34Å(3.4 nm)长。P22噬菌体的tailspike蛋白,拥有一个13圈的螺旋,由其构成的同源三聚体达到了200Å(20 nm)的长度。它的内部密集,无中心孔,包含了疏水残基和通过盐桥中和的带电残基。 果胶裂解酶和P
关于锌指结构的介绍
定义 指的是在很多蛋白中存在的一类具有指状结构的结构域,这些具有锌指结构的蛋白大多都是与基因表达的调控有关的功能蛋白。 共同特征 锌指结构的共同特征是通过肽链中氨基酸残基的特征基团与Zn2+的结合来稳定一种很短的,可自我折叠成“手指”形状的的多肽空间构型。 发现 锌指蛋白最初在非洲爪蟾
关于磷脂的结构介绍
甘油的C1和C2上的羟基被脂肪酸酯化,C3上的羟基被磷酸酯化,磷酸又与一极性醇(X—OH)连接,这就构成甘油磷脂。分子的非极性尾含有两个脂肪酸长链,甘油碳架上的C1连结的常是含16或18个碳原子的饱和脂肪酸,其C2则常被16~20个碳原子的不饱和脂肪酸占据。磷酰—X组成甘油磷脂的极性头,故甘油磷
关于类萜的结构介绍
萜类化合物!又称类异戊二烯!是植物界广泛存在的一类天然烃类化合物,具有异戊二烯单元 [1] 。类萜是异戊二烯五碳单位(饱和的或部分饱和的五碳支链化合物)的聚合物。因其不含脂肪酸成分,故属非皂化性脂质,亦称类异戊二烯或异戊烯脂质。此外还有由异戊二烯聚合链通过碳-碳键与其他成分结合组成的条合异戊烯脂
关于核苷的结构介绍
常见的核苷有:尿嘧啶核苷(尿嘧啶-1-β-D-呋喃核糖核苷)(见结构式a)、腺嘌呤核苷(腺嘌呤-9-β-D-呋喃核糖核苷)(b)、胞嘧啶核苷(胞嘧啶-1-β-D-呋喃核糖核苷)(c)、鸟嘌呤核苷(鸟嘌呤-9-β-D-呋喃核糖核苷)(d)、胸腺嘧啶核苷(胸腺嘧啶-1-β-D-2′-脱氧呋喃核糖核苷
关于果胶的结构介绍
虽然果胶被发现近200年,但目前对于其组成和结构并没有彻底弄清楚。果胶结构非常难解析的原因在于其结构和组成随着植物的种类、储藏期和加工工艺的不同而不同。此外,果胶中还存在一些杂质。根据果胶分子主链和支链结构的不同,将其分为4类:同型半乳糖醛酸聚糖(Homogalacturonan,HG)、鼠李半
关于烯烃的结构介绍
在单烯烃中,双键碳采取sp2杂化,三个sp2杂化轨道处于同一平面。未参与杂化的p轨道与该平面垂直。两个双键碳原子各用一个sp2杂化轨道通过轴向重叠形成δ键,各用一个p轨道通过侧面重叠形成π键。碳碳双键是由一根δ键和一根π键共同组成的。 由于π键是通过侧面重叠形成的,双键碳原子不能再以碳碳δ键为
关于结构域的结构相关介绍
在蛋白质三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合至蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 结构域(Structural Domain)是介于二级和三级结构之间的另一种结构层次。所谓结构域是指蛋白质亚基结构中明显分开的紧密球状结构区
关于蛋白质结构的结构测定介绍
专门存储蛋白质和核酸分子结构的蛋白质数据库中,接近90%的蛋白质结构是用X射线晶体学的方法测定的。X射线晶体学可以通过测定蛋白质分子在晶体中电子密度的空间分布,在一定分辨率下解析蛋白质中所有原子的三维坐标。大约9%的已知蛋白结构是通过核磁共振技术来测定的。该技术还可用于测定蛋白质的二级结构。除了
关于脑干网状结构的结构特征介绍
网状结构神经元的轴突有长的上升支和下降支分别可抵达丘脑及脊髓(图一-2天大鼠脑干矢状切面),同一可通过它的侧支影响其上下不同水平的许多神经元。网状结构神经元的树突与其长的轴突常呈垂直方向排列,表明多方面来源的传入冲动可在网状结构内整合(图二-网状结构神经元树突的走行方向幼鼠网状细胞树突与脑干长轴
关于蛋白质结构的结构预测介绍
测定蛋白质序列比测定蛋白质结构容易得多,而蛋白质结构可以给出比序列多得多的关于其功能机制的信息。因此,许多方法被用于从序列预测结构。 一、二级结构预测 二、三级结构预测 同源建模:需要有同源的蛋白三级结构为基础进行预测。 Threading法。“从头开始”(Ab initio):只需要蛋
关于叶绿素的化学结构介绍
叶绿素分子结构19世纪初,俄国化学家、色层分析法创始人M。C。茨韦特用吸附色层分析法证明高等植物叶子中的叶绿素有两种成分。德国H。菲舍尔等经过多年的努力,弄清了叶绿素的复杂的化学结构。1960年美国R。B。伍德沃德领导的实验室合成了叶绿素a。至此,叶绿素的分子结构得到定论。 叶绿素分子是由两部
关于热像仪的结构组成介绍
红外热像仪通常由光机组件、调焦/变倍组件、内部非均匀性校正组件(以下简称内校正组件)、成像电路组件和红外探测器/制冷机组件组成。光机组件主要由红外物镜和结构件组成,红外物镜主要实现景物热辐射的汇聚成像,结构件主要用于支承和保护相关组部件;调焦/变倍组件主要由伺服机构和伺服控制电路组成,实现红外物
关于垂体的结构组成介绍
垂体是人体最重要的内分泌腺,分前叶和后叶两部分。它分泌多种激素,如生长激素、促甲状腺激素、促肾上腺皮质激素、促性腺素、催产素、催乳素、黑色细胞刺激素等,还能够贮藏并释放下丘脑分泌的抗利尿激素。这些激素对代谢、生长、发育和生殖等有重要作用。 [1] [2] [3] [4-5] 垂体由外胚叶原始口
关于糖蛋白的结构介绍
糖蛋白中的糖链变化较大,含有丰富的结构信息。寡糖链往往是受体、酶类的识别位点。 1、 N-糖苷键型(N-连接) N-糖苷键型主要有三类寡糖链: ① 高甘露糖型,由GlcNAc和甘露糖组成; ② 复合型:除了GlcNAc和甘露糖外、还有果糖、半乳糖、唾液酸; ③ 杂合型,包含①和②的特征
关于制粒机的结构相关介绍
制粒机主要由喂料、搅拌、制粒、传动及 润滑系统等组成。其工作过程是要求含水量不大于15%的配合粉料,从料斗进入喂料绞龙,通过调节无级调速电机转速,获得合适的物料流量,然后进入 搅拌器,通过搅拌杆搅动与蒸汽混合进行调质,如果需要添加糖蜜或油脂,也从搅拌筒加入与蒸汽一起调质,油脂添加量一般不超过3%
关于球磨机的结构特点介绍
(1)主轴承采用了大直径双列调心棍子轴承,代替原来的滑动轴承,减少了摩擦,降低耗能,磨机容易启动。 (2)保留了普通磨机的端盖结构形式,大口径进出料口,处理量大。 (3)给料器分为联合给料器和鼓形给料器两种,结构简单,分体安装。 (4)没有惯性冲击,设备运行平稳,并减少了磨机停机停车维修时
关于糖类的主要结构介绍
主要由碳、氢、氧三种元素组成,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称。 糖类化合物包括单糖、单糖的聚合物及衍生物。葡萄糖是单糖。麦芽糖、蔗糖、乳糖是二糖。 单糖是多羟醛或多羟酮及他们的环状半缩醛或衍生物,带有多个羟基的醛类或者酮类。多糖则是单糖缩合的多聚物。
关于结构基因的基本介绍
结构基因是编码蛋白质或RNA的基因。细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或者都不表达。结构基因编码大量功能各异的蛋白质,其中有组成细胞和组织器官基本成分的结构蛋白、有催化活性的酶和各种调节蛋白等。
关于内含肽的结构介绍
被人们公认的标准内含肽的结构模体为:N端剪接区+中部归巢核酸内切酶区域+ C剪接区域 。两端剪接区参与蛋白质的剪接,中部区域参与蛋白质归巢过程,少数内含肽不含核酸内切酶区域。全功能型内含肽包括8个保守区或基序,一般由244~1650个氨基酸碱基组成,大部分在500个氨基酸残基左右。自导引归巢核酸
关于模板链的结构介绍
1、DNA的碱基互补配对原则:A与T配对,G与C配对。 2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。DNA的复制实质上是遗传信息的复制。 3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的
关于折叠酶的结构介绍
LIFs的结构由三部分组成N-末端跨膜疏水结构域,中间一段富含脯氨酸和丙氨酸的高度可变的中间铰链区与C-末端催化结构域。LIFs通过N-末端的疏水跨膜结构域锚定在内膜上,使Q-末端的活性结构域游离于周质中。N-末端的疏水跨膜结构域对其折叠活性没有影响,主要是负责将LIFs锚定在内膜上,防止其与脂