红藻氨酸的结构和功能

红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海马,诱发边缘叶癫痫。腹腔注射红藻氨酸可诱发癫痫持续状态,与人类颞叶癫痫相似,伴有特异性的海马损害。......阅读全文

红藻氨酸的结构和功能

红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海

红藻氨酸受体的结构

红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体

红藻氨酸受体的结构

红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体

红藻氨酸的主要功能特点

红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作

红藻氨酸受体

红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA

红藻氨酸的概念

  红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破

红藻氨酸的应用

驱虫剂神经科学研究神经退行性变剂:癫痫建模阿尔茨海默病模型

红藻氨酸的应用

驱虫剂神经科学研究神经退行性变剂癫痫建模阿尔茨海默病模型

红藻氨酸的特点

红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作

什么是红藻氨酸

红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动

什么是红藻氨酸?

红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动

红藻氨酸的基本介绍

  红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。   红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体

红藻氨酸受体的概念

红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA

红藻氨酸有哪些特点?

  红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性

红藻氨酸的研究与运用

  ①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible

红藻氨酸的基本概念

红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破坏脑

红藻氨酸的研究与运用

①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible fa

甲硫氨酸的结构和功能特点

甲硫氨酸是一种化学物质,是构成人体的必需氨基酸之一,分子式是C5H11O2NS,参与蛋白质合成。因其不能在体内自身生成,所以必须由外部获得。如果甲硫氨酸缺乏就会导致体内蛋白质合成受阻,造成机体损害。体内氧自由基造成的膜脂质过度氧化是导致机体多种损害的原因。脂质过氧化物会损害初级和次级溶酶体膜,使溶酶

高丝氨酸的结构和功能

高丝氨酸是一种化学物质,分子式为C4H9NO3。高丝氨酸是苏氨酸、甲硫氨酸和胱硫醚生物合成的中间产物,也存在于细菌的肽聚糖中。

营养学词汇红藻氨酸

红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海

红藻氨酸的研究与运用介绍

①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible fa

脯氨酸的结构功能和应用

脯氨酸(Proline,缩写为Pro 或P),化学式为C5H9NO2,分子量为115.13,是一种环状的亚氨基酸。α-亚氨基酸,中性,等电点为6.30,水中溶解度比任何氨基酸都大,25℃时100g水中可溶162 g左右。易潮解不易得结晶,有甜味。与茚三酮溶液共热,生成黄色化合物。一旦进入肽链后,可发

刀豆氨酸的结构和功能特点

刀豆氨酸,从刀豆(Canavalia ensiformis)中分离的氨基酸,按照消旋性,分为 L-刀豆氨酸(L-canavanine)和 D-刀豆氨酸(D-canavanine)。自然界常见的是 L-刀豆氨酸。L-刀豆氨酸(L-2-氨基-4-胍氧基—丁酸),是广泛存在于豆科植物及其种子中的天然非蛋白

甲硫氨酸tRNA的结构和功能特点

中文名称甲硫氨酸tRNA英文名称methionine tRNA定  义真核生物的一种起始tRNA,携带甲硫氨酸进入核糖体,进入新生肽链的N端。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

羟赖氨酸的的结构和功能特点

羟赖氨酸是胶原降解的另一种产物,它主要有两种糖甙形式:GHYL(糖甙羟赖氨酸)和Glc.GHYL。羟赖氨酸和它的糖甙产物在尿中含量不如羟脯氨酸高,但由于其含量所占比例固定,且不受食物来源影响,组织特异性高,所以较尿羟脯氨酸有更好的代表性。骨和皮肤中有三分之一的羟赖氨酸是糖基化了的,在皮肤Glc. g

L谷氨酸的结构和功能

L-谷氨酸是一种氨基酸,分子式为C5H9NO4。外观为白色结晶性粉末、几乎无臭 , 有特殊滋味和酸味。 224~225℃分解。饱和水溶液的 PH 值约3.2 。难溶于水,实际不溶于乙醇和乙醚、极易溶于甲酸。

胱氨酸的结构和主要功能

胱氨酸(Cystine)协助皮肤的形成,且对解毒作用很重要,借由减低身体吸收铜的能力,胱氨酸保护细胞免于铜中毒。当它被代谢时,会释放硫酸,而硫酸会与其他物质产生化学作用,增加整个代谢系统的解毒功能。此外,它辅助胰岛素的供给,胰岛素是人体利用糖和淀粉所必需的。也能促进细胞氧化还原,使肝功能旺盛,促进白

谷氨酸脱氢酶的结构和功能

谷氨酸脱氢酶(GLDH或GDH)是线粒体酶,主要存在于肝脏、心肌及肾脏,少量存在于脑、骨骼肌及白细胞中。GDH除催化L-谷氨酸脱氢外,还具有催化其他氨基酸如L-缬氨酸、L-2-氨基丁酸及L-亮氨酸脱氨。其测定方法主要是连续监测法。

褐藻门、红藻门、金藻门结构与功能观察实验

一、目的要求     掌握三门藻类的基本特征,代表植物的形态构造、繁殖和生活史。 二、实验材料     海带属、水云属、紫菜属、舟形藻属、海藻标本。 三、实验内容和方法 (一) 褐藻门(Phaeophyta) 1.海带(Laminaria japonica)  (1

瓜氨酸的结构即功能特点

瓜氨酸是一种α-氨基酸,化学式为C6H13N3O3,是从鸟氨酸及胺基甲酰磷酸盐在尿素循环中生成,或是通过一氧化氮合酶(NOS)催化精氨酸生成NO的副产物。患有类风湿性关节炎的病人(约80%)会发展一套免疫反应对抗带有瓜氨酸的蛋白质。虽然这种反应机制的起因不明,但察觉抗体可以帮助这类病的诊断。