红藻氨酸受体的概念
红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA受体相比,KAR的了解较少。突触后红藻氨酸受体参与兴奋性神经传递。通过突触前机制调节抑制性神经递质GABA的释放,突触前红藻氨酸受体与抑制性神经传递有关。......阅读全文
红藻氨酸受体的概念
红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA
红藻氨酸受体
红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA
红藻氨酸的概念
红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破
红藻氨酸受体的结构
红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体
红藻氨酸受体的结构
红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体
红藻氨酸的基本概念
红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破坏脑
红藻氨酸的应用
驱虫剂神经科学研究神经退行性变剂癫痫建模阿尔茨海默病模型
红藻氨酸的应用
驱虫剂神经科学研究神经退行性变剂:癫痫建模阿尔茨海默病模型
红藻氨酸的特点
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作
什么是红藻氨酸?
红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动
什么是红藻氨酸
红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动
红藻氨酸的基本介绍
红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体
红藻氨酸有哪些特点?
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性
红藻氨酸的研究与运用
①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible fa
红藻氨酸的研究与运用
①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible
红藻氨酸的结构和功能
红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海
酪氨酸激酶偶联受体的概念
中文名称酪氨酸激酶偶联受体英文名称tyrosine kinase-linked receptor定 义缺少细胞内催化活性的酶联受体。其配体多为细胞因子,此受体的细胞内区无蛋白激酶活性,而是通过偶联方式激活Janus蛋白激酶活性,随之通过信号级联反应调节相关基因的表达。应用学科细胞生物学(一级学科)
受体酪氨酸激酶的概念特点
受体酪氨酸激酶(receptor tyrosine kinase,RTK) :又称酪氨酸蛋白激酶受体,是细胞表面的一大类重要受体家族,迄今已鉴定有50余种,包括7个亚族。所有RTK的N端位于细胞外,为配体结合域,C端位于胞内,具有酪氨酸激酶结构域和自磷酸化位点。它的细胞外配体是可溶性或膜结合的多肽或
营养学词汇红藻氨酸
红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海
红藻氨酸的研究与运用介绍
①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible fa
红藻氨酸的主要功能特点
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作
视黄酸受体的概念
中文名称视黄酸受体英文名称retinoic acid receptor;RAR定 义属于核受体超家族,包括α、β、γ三种。RAR-β又分β1、β2、β3、β4等。通过与其配体结合调节靶基因转录,从而发挥各种生物学效应。在介导细胞生长和凋亡方面起重要作用。应用学科生物化学与分子生物学(一级学科),激
细胞表面受体的概念
如T细胞表面的抗原受体、红细胞受体;B细胞表面的Fc受体、C3b受体和抗原受体 (SIg)等。此外,如激素、毒素、病毒和细菌的粘着等亦均存在相应的受体,它们只有与细胞上的受体结合后,才能发挥其生物效应
细胞表面受体的概念
细胞表面受体是嵌入细胞质膜的受体。它们通过接收(结合)细胞外分子在细胞信号传导中起作用。它们是特殊的整合膜蛋白,允许细胞和细胞外空间之间的通讯。细胞外分子可能是激素、神经递质、细胞因子、生长因子、细胞粘附分子或营养素;它们与受体反应以诱导细胞代谢和活性的变化。在信号转导过程中,配体结合通过细胞膜影响
核输出受体的概念
中文名称核输出受体英文名称nuclear export receptor定 义核内能与含核输出信号的运载物结合的受体蛋白。具有同时与含核输出信号的运载蛋白和核孔蛋白结合,引导运载物大分子通过核孔复合体进入细胞质。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
受体细胞的概念
受体细胞是指在转化和转导(感染)中接受外源基因的宿主细胞。受体细胞也叫宿主细胞。受体细胞有原核受体细胞(最主要是大肠杆菌)、真核受体细胞(最主要是酵母菌)、动物细胞和昆虫细胞(其实也是真核受体细胞)。 原核受体细胞中,最常用的宿主细胞是大肠杆菌。
补体受体的概念
中文名补体受体外文名complement receptor存在于多形核白血球、巨噬细胞途 径补体活化途径的第一途径补体受体 complement receptor存在于不同细胞膜表面,能与补体激活过程所形成的活性片段相结合,介导多种生物效应的受体分子。对补体第三成分(C3)的受体,存在于多形核
Toll样受体的概念
Toll样受体(Toll-like receptors, TLR)是参与非特异性免疫(天然免疫)的一类重要蛋白质分子,新近研究发现,TLR能结合机体自身产生的一些内源性分子(即内源性配体)。免疫佐剂可增强抗肿瘤免疫,其分子和细胞机制得到进一步阐明TLR也在其中扮演重要角色。由于肿瘤在发生发展过程中可
药物与受体概念
受体(receptor)是细胞在进化过程中形成的细胞蛋白组分,能识别周围环境中某种微量化学物质,首先与之结合,并通过中介的信息转导与放大系统,触发随后的生理反应或药理效应。自从Langley 提出受体学说100年后,受体已被证实为客观存在的实体,类型繁多,作用机制多已被阐明,现在受体已不再是一个
研究提出一种潜在新型抗癫痫策略
近日,西安交通大学前沿院李旭辉和卓敏教授团队结合VISoR全脑成像、膜片钳电生理、行为学、药理学、光/化学遗传学、脑电记录和钙成像等综合性方法研究了前扣带回皮层(Anteriorcingulatecortex,ACC)-纹状体投射环路中红藻氨酸受体(Kainatereceptor, KAR),受体参