红藻氨酸受体的结构

红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体(例如,由GluR5和GluR6组成的受体)),然而,KA1和KA2只能通过与GluR5-7亚基之一结合形成功能性受体。自2009年以来,红藻氨酸受体亚基已重新命名,以与其基因名称相对应。因此,GluR5-7现在是GluK1-3,KA1和KA2分别是GluK4和GluK5。每个KAR亚基以400个残基的胞外N端结构域开始,该结构域在组装中起关键作用,然后是神经递质结合裂隙的第一段,称为S1。然后该部分穿过细胞膜,形成三个跨膜区域中的xxx个,M1。然后M2段从膜的细胞质面开始,推入细胞膜大约一半,然后浸回细胞质。该部分称为“p环”,决......阅读全文

红藻氨酸受体的结构

红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体

红藻氨酸受体的结构

红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体

红藻氨酸受体

红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA

红藻氨酸受体的概念

红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA

红藻氨酸的结构和功能

红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海

红藻氨酸的应用

驱虫剂神经科学研究神经退行性变剂癫痫建模阿尔茨海默病模型

红藻氨酸的概念

  红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破

红藻氨酸的应用

驱虫剂神经科学研究神经退行性变剂:癫痫建模阿尔茨海默病模型

红藻氨酸的特点

红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作

什么是红藻氨酸?

红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动

什么是红藻氨酸

红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动

红藻氨酸的基本介绍

  红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。   红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体

红藻氨酸有哪些特点?

  红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性

红藻氨酸的研究与运用

①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible fa

红藻氨酸的研究与运用

  ①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible

红藻氨酸的基本概念

红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破坏脑

营养学词汇红藻氨酸

红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海

红藻氨酸的研究与运用介绍

①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible fa

红藻氨酸的主要功能特点

红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作

Nat-Struct-Mol-Biol:钠在大脑中发挥着独特的重要作用

  加拿大研究人员发现,盐的主要化学成分——钠,是大脑中重要神经递质——红藻氨酸受体的一个独特“开关”。红藻氨酸受体是大脑正常功能的基础,与癫痫症和神经性疼痛等多种疾病相关。   麦吉尔大学药理学和药物治疗学系教授德里克·鲍伊的此项发现,为大脑如何传输信息提供了不同的观点。该项研究的重点在于开发药

钠是大脑神经递质独特“开关”-将用于开发新药物

  加拿大研究人员发现,盐的主要化学成分——钠,是大脑中重要神经递质——红藻氨酸受体的一个独特“开关”。红藻氨酸受体是大脑正常功能的基础,与癫痫症和神经性疼痛等多种疾病相关。   麦吉尔大学药理学和药物治疗学系教授德里克·鲍伊的此项发现,为大脑如何传输信息提供了不同的观点。该项研究的重点

科学家发现钠在大脑中充当开关作用

  加拿大麦吉尔大学的研究人员最新发现,日常生活中大量存在于食盐中的化学元素钠,在大脑中的主要神经递质受体中起着一种开关作用。这种受体被称为红藻氨酸受体,在大脑正常运转中起着重要的作用,同时还与许多疾病,如癫痫及神经性疼痛有着密不可分的联系。   麦吉尔大学药理学与治疗方法实验室负责人、加拿大受体

Toll样受体的受体结构

所有Toll样受体同源分子都是Ⅰ型跨膜蛋白,可分为胞膜外区,胞浆区和跨膜区三部分。Toll样受体胞膜外区主要行使识别受体及与其他辅助受体(co-receptor)结合形成受体复合物的功能。Toll样受体的胞浆区与IL-1R家族成员胞浆区高度同源(IL-1R介导的信号传导系统和机制与果蝇类似),该区称

研究提出一种潜在新型抗癫痫策略

近日,西安交通大学前沿院李旭辉和卓敏教授团队结合VISoR全脑成像、膜片钳电生理、行为学、药理学、光/化学遗传学、脑电记录和钙成像等综合性方法研究了前扣带回皮层(Anteriorcingulatecortex,ACC)-纹状体投射环路中红藻氨酸受体(Kainatereceptor, KAR),受体参

新发现!一种潜在新型抗癫痫策略

  近日,西安交通大学前沿院李旭辉和卓敏教授团队结合VISoR全脑成像、膜片钳电生理、行为学、药理学、光/化学遗传学、脑电记录和钙成像等综合性方法研究了前扣带回皮层(Anteriorcingulatecortex,ACC)-纹状体投射环路中红藻氨酸受体(Kainatereceptor, KAR),受

受体酪氨酸激酶

受体酪氨酸激酶(RTK)是许多多肽生长因子、细胞因子和激素的高亲和力细胞表面受体。在人类基因组中鉴定的90个独特的酪氨酸激酶基因中,有58个编码受体酪氨酸激酶蛋白。受体酪氨酸激酶已被证明不仅是正常细胞过程的关键调节剂,而且在多种癌症的发展和进展中也具有关键作用。受体酪氨酸激酶的突变导致一系列信号级联

叶酸受体的结构

  叶酸是包括DNA合成、DNA修复和细胞分裂在内的很多生物过程所需的一种必要维他命。“正常”细胞表达数量相对较少的三个叶酸受体,它们在癌细胞中普遍过度表达;为此,它们是新的化疗方法和癌症造影剂的潜在目标。在这篇文章中,作者解决了人叶酸受体在它介导叶酸向细胞中的吸收与叶酸结合在一起的形式的X 射

酪氨酸激酶的受体型

  受体酪氨酸激酶(receptor protein tyrosine kinases,RPTKs)的胞外区是结合配体结构域,配体是可溶性或膜结合的多肽或蛋白类激素,包括胰岛素和多种生长因子。胞内段是酪氨酸蛋白激酶的催化部位,并具有自磷酸化位点。  配体(如EGF)在胞外与受体结合并引起构象变化,导

丙氨酸的结构

丙氨酸,化学式为C3H7NO2,分子量为89.09,是构成蛋白质的基本单位,是组成人体蛋白质的21种氨基酸之一。有α-丙氨酸和β-丙氨酸两种同分异构体。

Toll样受体的结构

所有Toll样受体同源分子都是Ⅰ型跨膜蛋白,可分为胞膜外区,胞浆区和跨膜区三部分。Toll样受体胞膜外区主要行使识别受体及与其他辅助受体(co-receptor)结合形成受体复合物的功能。Toll样受体的胞浆区与IL-1R家族成员胞浆区高度同源(IL-1R介导的信号传导系统和机制与果蝇类似),该区称