基因翻译后调控的过程
翻译后修饰(PTM)是对蛋白质的共价修饰。像RNA剪接一样,它们有助于使蛋白质组更加丰富多样。这些修饰通常由酶催化。此外,诸如氨基酸侧链残基的共价添加这样的修饰过程通常可以被其它酶逆转。但蛋白水解酶对蛋白质骨架的水解切割是不可逆转的 。PTM在细胞中发挥着许多重要作用。例如,磷酸化主要涉及激活和失活蛋白质以及信号传导途径 。PTM参与转录调控,因为乙酰化和甲基化的一个重要功能是组蛋白尾部修饰,它改变了DNA的可转录性。......阅读全文
基因翻译后调控的过程
翻译后修饰(PTM)是对蛋白质的共价修饰。像RNA剪接一样,它们有助于使蛋白质组更加丰富多样。这些修饰通常由酶催化。此外,诸如氨基酸侧链残基的共价添加这样的修饰过程通常可以被其它酶逆转。但蛋白水解酶对蛋白质骨架的水解切割是不可逆转的 。PTM在细胞中发挥着许多重要作用。例如,磷酸化主要涉及激活和失活
关于基因表达的翻译调控和翻译后调控的介绍
1、基因表达的翻译调控 翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。 2、基因表达的翻译后调控 翻译后修饰(PTM)是对蛋
基因表达的翻译后调控的简介
翻译后修饰(PTM)是对蛋白质的共价修饰。像RNA剪接一样,它们有助于使蛋白质组更加丰富多样。这些修饰通常由酶催化。此外,诸如氨基酸侧链残基的共价添加这样的修饰过程通常可以被其它酶逆转。但蛋白水解酶对蛋白质骨架的水解切割是不可逆转的。PTM在细胞中发挥着许多重要作用。例如,磷酸化主要涉及激活和失
翻译调控的的过程和作用
翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。
基因翻译的调控办法
任何体内的生物反应都必须在调控的作用下,才有意义。翻译的调控是十分精密复杂的。在原核生物里翻译调控的基本单位不是单个的mRNA而是mRNA中的单个阅读框。以ATP合成酶为例,在原核生物里,该酶包含A、B、C、D、E、F、G、H等多个亚基,其基因拷贝均为一份,在转录时转录到同一个mRNA上。而实际每个
关于真核生物的基因调控—翻译后控制的基本介绍
翻译后控制的事例不多。一般认为脑垂体后叶细胞产生的促肾上腺皮质激素和脂肪酸释放激素是由同一原始翻译产物经不同的加工而形成的。迄今为止对于真核生物基因调控作用的了解仍然处在探索的阶段,特别是对于高等动植物的基因调控过程了解得更少,还不能形成一个完整的模式。1972年美国学者E.戴维森和R.J.布里
基因表达的翻译调控的介绍
翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。
研究揭示种子萌发过程的翻译调控机制
种子作为植物繁衍的核心载体,其萌发与休眠是植物长期进化形成的关键适应性策略。这一策略不仅维系着物种延续和生态平衡,更直接影响农业生产和粮食安全。种子萌发是植物从休眠状态向活跃生长状态转变的关键节点,这一过程受多种内在因素和外界环境的调节,包括激素信号(如脱落酸ABA和赤霉素GA的拮抗作用),环境感知
研究揭示种子萌发过程的翻译调控机制
种子作为植物繁衍的核心载体,其萌发与休眠是植物长期进化形成的关键适应性策略。这一策略不仅维系着物种延续和生态平衡,更直接影响农业生产和粮食安全。种子萌发是植物从休眠状态向活跃生长状态转变的关键节点,这一过程受多种内在因素和外界环境的调节,包括激素信号(如脱落酸ABA和赤霉素GA的拮抗作用),环境感知
翻译后修饰
中文名翻译后修饰外文名Post-translational modification定义翻译后修饰是指蛋白质在翻译后的化学修饰。对于大部分的蛋白质来说,这是蛋白质生物合成的较后步骤。
蛋白质合成翻译阶段的基因调控介绍
蛋白质合成翻译阶段的基因调控有三个方面: ① 蛋白质合成起始速率的调控; ② MRNA的识别; ③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。 真核生物
基因转录后调控方式
真核生物的RNA被翻译之前需要通过核孔输出,因此核输出对基因表达有着显著影响。所有进出细胞核的mRNA的运输都是通过核孔进行的,受到各种输入蛋白和输出蛋白的控制。携带遗传密码的mRNA需要存活足够长的时间才能被翻译,因为mRNA在翻译之前必须经过很长距离的运输。在典型的细胞中,RNA分子仅在特异性保
翻译水平上的调控
蛋白质合成翻译阶段的基因调控有三个方面:① 蛋白质合成起始速率的调控;② MRNA的识别;③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。真核生物mRNA的“扫描模式
什么是翻译调控?
在mRNA翻译成蛋白质的水平上进行控制,包括控制蛋白质合成的速度、mRNA稳定性的控制、翻译起始的控制等。
Molecular-Cell:蛋白质翻译后修饰调控植物胁迫反应
甲基化修饰与一氧化氮(nitric oxide; NO)依赖的亚硝基化修饰是高度保守的蛋白质翻译后修饰,这两类修饰参与调控众多生物学过程,包括调控非生物胁迫反应。但二者调控非生物胁迫的分子机制不甚清楚。 中国科学院遗传与发育生物学研究所左建儒研究组在亚硝基化蛋白质组学研究中发现拟南芥蛋白质
翻译的过程简述
翻译过程需要的原料:mRNA、tRNA、21种氨基酸、能量、酶、核糖体。翻译的过程大致可分作三个阶段:起始、延长、终止。翻译主要在细胞质内的核糖体中进行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下与特定的转运RNA结合并被带到核糖体上。生成的多肽链(即氨基酸链)需要通过正确折叠形成蛋白质,许多蛋
基因组编辑调控植物内源基因翻译效率的实验流程
上游开放阅读框uORF广泛存在于动植物基因的5’非翻译区,通常能够抑制下游主开放阅读框pORF的翻译。中国科学院遗传与发育生物学研究所高彩霞研究组率先利用CRISPR/Cas9技术对uORF进行编辑,发现能够显着提高目标基因的翻译效率,建立了利用基因组编辑调控内源基因蛋白质翻译效率的新方法,相关成果
真核细胞翻译的调控介绍
值得注意的是,虽然在原核生物细胞内,翻译的起始过程依然有IF1、IF2、IF3三类因子的参与(真正耗能的步骤是IF2介导的起始tRNA入位和大亚基招募),但原核细胞几乎没有以这些蛋白因子为靶点进行的调控模式。在真核细胞内,由于大量翻译起始因子的参与,大量对于翻译的调控也是以这些蛋白因子为靶点进行
原核细胞翻译的调控介绍
在整体上,原核细胞可通过改变核糖体结合位点(RBS)序列或者在RBS邻域制造二级结构来阻止小亚基和mRNA的结合进而阻止翻译的起始。一方面由于RBS序列固定,改变其序列将会造成所有mRNA停止翻译。另一方面由于改变序列并非快速准确的调控方法,针对单个转录本,原核细胞倾向于采取以下几种方式进行调控
关于真核生物的基因调控—翻译控制的基本介绍
真核生物的翻译控制的主要形式是控制mRNA的稳定性。mRNA5′端的加帽作用以及它的3′端的多聚A的加尾作用都有助于 mRNA分子的稳定。在某些真核生物中mRNA进入细胞质以后并不立即作为模板进行蛋白质合成,而是与一些蛋白质结合形成RNA蛋白质(RNP)颗粒,在这种状态的mRNA半衰期可以延长。
研究发现HYL1蛋白调控miRNA介导的翻译抑制过程
中国科学院分子植物科学卓越创新中心/植物生理生态研究所研究员何玉科研究组在The Plant Cell上,发表了题为Cytoplasmic HYL1 modulates miRNA-mediated translational repression的研究论文。该研究组发现,HYL1蛋白除了介导m
基因组编辑调控植物内源基因翻译效率的实验流程公布
上游开放阅读框uORF广泛存在于动植物基因的5’非翻译区,通常能够抑制下游主开放阅读框pORF的翻译。中国科学院遗传与发育生物学研究所高彩霞研究组率先利用CRISPR/Cas9技术对uORF进行编辑,发现能够显着提高目标基因的翻译效率,建立了利用基因组编辑调控内源基因蛋白质翻译效率的新方法,相关
基因组编辑调控植物内源基因翻译效率实验流程发布
上游开放阅读框uORF广泛存在于动植物基因的5’非翻译区,通常能够抑制下游主开放阅读框pORF的翻译。中国科学院遗传与发育生物学研究所高彩霞研究组率先利用CRISPR/Cas9技术对uORF进行编辑,发现能够显著提高目标基因的翻译效率,建立了利用基因组编辑调控内源基因蛋白质翻译效率的新方法,相关
基因表达的转录后调控的介绍
真核生物的RNA被翻译之前需要通过核孔输出,因此核输出对基因表达有着显著影响。所有进出细胞核的mRNA的运输都是通过核孔进行的,受到各种输入蛋白和输出蛋白的控制。 携带遗传密码的mRNA需要存活足够长的时间才能被翻译,因为mRNA在翻译之前必须经过很长距离的运输。在典型的细胞中,RNA分子仅在
关于翻译的过程介绍
翻译过程需要的原料:mRNA、tRNA、21种氨基酸、能量、酶、核糖体。 翻译的过程大致可分作三个阶段:起始、延长、终止。翻译主要在细胞质内的核糖体中进行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下与特定的转运RNA结合并被带到核糖体上。生成的多肽链(即氨基酸链)需要通过正确折叠形成蛋白质
Protein-Cell:病毒感染时翻译后修饰乙酰化的动态调控
天然免疫应答是机体应对病原微生物入侵的第一道防线,在杀伤病原微生物、清除感染细胞和维持体内稳态等方面发挥关键作用。蛋白质翻译后修饰(protein post-translational modifications,PTMs)广泛参与调控各种通路中信号分子的激活。非组蛋白乙酰化修饰(non-hi
基因翻译的终止
本过程细胞主要需完成以下目标:(1)使翻译停止,不再有新的氨基酸掺入;(2)释放合成的多肽链;(3)释放结合在mRNA上的各组分;(4)确保核糖体大小亚基以及重要因子的重复利用。原核细胞和真核细胞在此过程的处理上有明显不同,下面将分开介绍。 (一)原核细胞A.肽链的释放(1)释放因子RF1/2 (t
基因翻译的延伸
此过程在真核细胞和原核细胞中高度类似,下面只以原核细胞为例进行讨论。涉及到的因子主要有EF·Tu和EF·G,在真核细胞中对应的名称分别是是eEF1和eEF2。A. tRNA的转运和入位(1)非起始AA·tRNA结合EF·Tu·GTP形成一个三元复合物;(2)该三元复合物结合至核糖体P位点,tRNA反
真核生物翻译的调控(1)
原核生物基因表达的调控主要在转录水平上进行,而真核生物由于RNA较为稳定,所以除了存在转录水平的调控以外,在翻译水平上也进行各种形式的调控。在蛋白质生物合成的起始反应中主要涉及到细胞中的四种装置,这就是:1.核糖体,它是蛋白质生物合成的场所;2.蛋白质合成的模板mRNA它是传递基因信息的媒介;3.可
真核生物翻译的调控(2)
5′端非翻译区的二极结构影响到调控蛋白与帽结构的接近,阻碍40S前起始复合体的装配和在mRNA上的扫描,起负调控的作用。但若二极结构位于 AUG的近下游,(最佳距离为14 nt),将会使移动的40亚基停靠在AUG位点,增强起始反应。真核的系列翻译起始因子可使二极结构解链,使翻译复合体顺利通过