SN2反应的立体化学

从SN2反应机理可以看出,亲核试剂从离去基团的背面进攻,其结果发生了构型的转化。Ingold等人将光活性的2—碘辛烷与放射同位素碘离子在丙酮中进行交换反应,结果发现,消旋化速率是交换反应速率的两倍,说明产物的构型发生了转化——瓦尔登(Walden)转化。反应物2—碘辛烷是S构型,经SN2反应后,构型完全转化,成为R构型,旋光方向相反,R、S构型形成一对外消旋体,旋光抵消,因此,消旋化速率是交换反应速率的两倍。立体化学的证据支持了SN2机理,从构型的完全转化,说明了亲核试剂是从离去基团的背面进攻中心碳原子。绝大多数亲核取代反应属于SN2机理,大量的实验事实证明了这一点。因此,SN2反应总是伴随着构型的翻转,或者说,完全的构型转化往往是SN2反应标志。 为什么亲核试剂总是从离去基团的背面进攻?这是由于①从正面进攻会受到携带电子的离去基团的排斥;②从背面进攻能形成较为稳定的过渡态,降低反应的活化能。......阅读全文

SN2反应的立体化学

从SN2反应机理可以看出,亲核试剂从离去基团的背面进攻,其结果发生了构型的转化。Ingold等人将光活性的2—碘辛烷与放射同位素碘离子在丙酮中进行交换反应,结果发现,消旋化速率是交换反应速率的两倍,说明产物的构型发生了转化——瓦尔登(Walden)转化。反应物2—碘辛烷是S构型,经SN2反应后,构型

关于亲核取代反应的SN2反应介绍

  较强亲核剂直接由背面进攻碳原子,并形成不稳定的一碳五键的过渡态,随后离去基团离去,完成取代反应。  常发生于:碳原子取代较少(如:CH3X),可较容易使 SN2 反应发生。原因是碳原子上有烷基取代时会有供电效应使被进攻的碳正电性减弱,且烷基取代会产生空间位阻,阻碍进攻。  对碳正离子生成有不利条

双分子亲核取代反应的反应机理

SN2反应最常发生在脂肪族sp3杂化的碳原子上,碳原子与一个电负性强、稳定的离去基团(-X)相连,一般为卤素阴离子。亲核试剂(Nu)从离去基团的正后方进攻碳原子,Nu-C-X角度为180°,以使其孤对电子与C-X键的σ反键轨道可以达到最大重叠。然后形成一个五配位的反应过渡态,碳约为sp2杂化,用两个

双分子亲核取代反应的反应机理

SN2反应最常发生在脂肪族sp3杂化的碳原子上,碳原子与一个电负性强、稳定的离去基团(-X)相连,一般为卤素阴离子。亲核试剂(Nu)从离去基团的正后方进攻碳原子,Nu-C-X角度为180°,以使其孤对电子与C-X键的σ反键轨道可以达到最大重叠。然后形成一个五配位的反应过渡态,碳约为sp2杂化,用两个

关于双分子亲核取代反应的反应机理

  SN2反应最常发生在脂肪族sp3杂化的碳原子上,碳原子与一个电负性强、稳定的离去基团(-X)相连,一般为卤素阴离子。亲核试剂(Nu)从离去基团的正后方进攻碳原子,Nu-C-X角度为180°,以使其孤对电子与C-X键的σ反键轨道可以达到最大重叠。然后形成一个五配位的反应过渡态,碳约为sp2杂化,用

SN2的作用机理

卤代烃中的卤素可以被其他原子或基团所取代。反应中,卤素以负离子的形式离去,取代原子或基团则是一些亲核试剂。亲核试剂进攻缺电子的碳形成取代产物——亲核取代反应,用SN表示。SN2机理:对溴甲烷的水解,反应是同步过程。亲核试剂从离去基团的背面进攻中心碳原子,首先生成较弱的键,同时离去基团与碳之间的键有一

化学反应的立体专一性概念

立体专一性,立体化学术语。当一个反应中,互为立体异构体的反应物分别生成立体特征不同的产物时,此反应具有立体专一性。SN2反应和光延反应是典型的立体专一反应。这个概念需要与立体选择性相区别。立体选择性是指,反应机理允许生成两种产物,但实际上只有一个为主要产物。立体专一的反应都具有立体选择性。

什么是立体化学?

立体化学是从三维空间揭示分子的结构和性能。手性分子是立体化学中极其重要的部分之一。同分异构在有机化学中是极为普遍的现象。构造异构是指分子中的原子或基团的连接次序不同产生的异构现象。立体异构是指分子中的原子或基团在空间的排列不同步产生的异构现象。顺反异构和构象异构均属于立体异构。

立体化学作用理论介绍

立体化学作用理论的代表人物是伍斯。他认为密码起源于氨基酸和密码子或反密码子(或更一般地和RNA)的立体化学相互作用。这个观点可以追溯至1962年,伍斯推测编码关系可能是核酸与氨基酸间的立体化学作用,他把“简并性”中涉及的密码子看作是相等的核苷酸,1965年5月,伍斯发表题为《密码的规则》的论文阐明遗

亲核取代反应的SN1-反应介绍

  第一步是原化合物的解离生成碳正离子和离去基团,然后亲核试剂与碳正离子结合。由于速控步为第一步,只涉及一种分子,故称 SN1 反应。  常发生于:碳上取代基较多,如:(CH3)3CX,使得相应碳正离子的能量更低,更加稳定。同时位阻效应也限制 SN2 机理中亲核试剂的进攻。  对碳阳离子生成有利条件

简述密码子的立体化学作用理论

  立体化学作用理论的代表人物是伍斯。他认为密码起源于氨基酸和密码子或反密码子(或更一般地和RNA)的立体化学相互作用。这个观点可以追溯至1962年,伍斯推测编码关系可能是核酸与氨基酸间的立体化学作用,他把“简并性”中涉及的密码子看作是相等的核苷酸,1965年5月,伍斯发表题为《密码的规则》的论文阐

我所揭示Fˉ-+-(CH3)3CI反应中SN2通道消失的本质

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202208/t20220818_6501171.html  近日,我所分子反应动力学国家重点实验室傅碧娜研究员、张东辉院士团队揭示了气相反应Fˉ + (CH3)3CI中双分子亲核取代反应(SN2)通道消失的本质,为理解亲核

中科院揭示Fˉ-+-(CH3)3CI反应中SN2通道消失的本质

  近日,中国科学院大连化学物理研究所分子反应动力学国家重点实验室研究员傅碧娜、中科院院士张东辉团队,揭示了气相反应Fˉ + (CH3)3CI中双分子亲核取代反应(SN2)通道消失的本质,为探析亲核取代反应提供了新视角。  SN2是有机化学教科书上的经典反应,也是合成化学中最重要和最实用的一类工具反

亲核取代反应的影响因素介绍

  1、底物的烃基结构:反应底物的分子烃基中C上的支链越多,SN2的反应越慢。通常,伯碳上最容易发生SN2,仲碳其次,叔碳最难。  2、离去基团(L)一般来说,离去基团越容易离去,SN1越快。  3、亲核试剂(Nu):亲核试剂的亲核性愈强,浓度愈高,反应速度愈快。  4、溶剂的种类:极性溶剂中,SN

SnMOFs来实现最佳储Li性能

  可再充电锂离子电池(LIBs)具有高能量和高功率密度的优点,广泛的应用于电动汽车等便携式电子产品领域。其中,锡(Sn)基材料(Sn和SnO2等)作为大容量负极材料时,具有Sn含量丰富、高理论容量(994 mAh g-1)和适宜负极电压的优点而被广泛研究。然而,Sn基材料在锂(Li)合金化和脱合金

科学家成功利用醛缩酶催化双分子亲核取代反应

中国科学院上海药物研究所研究员廖苍松、副研究员张睿团队联合中国科学院天津工业生物技术研究所研究员盛翔团队,成功利用醛缩酶催化双分子亲核取代(SN2)反应一步高效高选择性合成复杂非天然氨基酸,拓展了醛缩酶的催化功能范围,也展现了其催化的非天然反应在不对称合成中的应用潜力。相关研究近日发表于《美国化学会

科学家成功利用醛缩酶催化双分子亲核取代反应

  中国科学院上海药物研究所研究员廖苍松、副研究员张睿团队联合中国科学院天津工业生物技术研究所研究员盛翔团队,成功利用醛缩酶催化双分子亲核取代(SN2)反应一步高效高选择性合成复杂非天然氨基酸,拓展了醛缩酶的催化功能范围,也展现了其催化的非天然反应在不对称合成中的应用潜力。相关研究近日发表于《美国化

锡基MOFs的设计合成及其在锂离子电池中的应用

  在锂离子电池电极材料的研究中,锡基材料如锡单质及其氧化物被认为是石墨负极的优良替代品之一,因为它们具有高比容量和低电压平台等优点,能够使锂离子电池实现更高的能量密度。然而锡基材料在充放电过程中会产生相当大的体积膨胀,进而导致粉体脱落造成循环性能的衰减,这阻碍了其在锂离子电池中的应用。针对锡基材料

L苏氨酸醛缩酶催化双分子亲核取代反应研究获进展

  双分子亲核取代(SN2)反应与羟醛缩合反应是有机化学和生物化学合成中的核心反应类型。然而,他们的反应机制具有根本性的差异。自然界分别进化出了专一的酶家族催化这两类反应,即催化羟醛缩合的醛缩酶和催化SN2途径的甲基转移酶等类似酶。在此之前,尚未有研究报道醛缩酶能催化SN2取代反应。  近期,中国科

双分子亲核取代反应的基本信息

双分子亲核取代反应(SN2)是亲核取代反应的一类,其中S代表取代(Substitution),N代表亲核(Nucleophilic),2代表反应的决速步涉及两种分子。SN2反应是由于起始物质与阴离子Y之间发生冲突所产生的反应,因此称为双分子反应。SN2反应只有1个阶段。从结构式上来看,由Y伸出来的曲

双分子亲核取代反应的结构式和反应过程

双分子亲核取代反应(SN2)是亲核取代反应的一类,其中S代表取代(Substitution),N代表亲核(Nucleophilic),2代表反应的决速步涉及两种分子。SN2反应是由于起始物质与阴离子Y之间发生冲突所产生的反应,因此称为双分子反应。SN2反应只有1个阶段。从结构式上来看,由Y伸出来的曲

关于双分子亲核取代反应的基本介绍

  双分子亲核取代反应(SN2)是亲核取代反应的一类,其中S代表取代(Substitution),N代表亲核(Nucleophilic),2代表反应的决速步涉及两种分子。  SN2反应是由于起始物质与阴离子Y之间发生冲突所产生的反应,因此称为双分子反应。SN2反应只有1个阶段。从结构式上来看,由Y伸

立体专一性的碳(sp2)碳(sp3)偶联反应研究获进展

  发展立体选择性或专一性的偶联反应实现手性分子的高效构建是当今有机化学领域中的重要研究方向。近年来,过渡金属催化立体选择性或专一性的偶联反应有了较快的发展,但仍然存在过渡金属催化剂用量大、手性控制不佳等局限。传统的SN2反应也是实现立体专一性碳(sp2)-碳(sp3)间偶联的重要手段,但由于采用高

大连化物所瓦尔登翻转取代反应机理研究获进展

  近日,中国科学院大连化学物理研究所分子反应动力学国家重点实验室研究员张东辉、副研究员刘舒团队在瓦尔登(Walden)翻转取代反应机理研究中取得新进展,首次对一个通过瓦尔登翻转机理实现的取代反应进行了精确的理论研究,获得了详尽的动力学信息和清晰的物理图像,相关研究成果发表在《自然-通讯》(Natu

瓦尔登反转的的实验原理

发生在四面体环境的碳原子上、经由背面攻击,是化学中最重要和最有用的一类反应。例如SN2反应中,亲核试剂(通常带负电荷)从一侧接近饱和的碳原子,置换碳原子对面一侧的离去基团,导致碳中心的翻转和分子手性的变化。数十年的大量研究表明具有中心势垒的气相SN2反应表现出反向二级动力学同位素效应(即当同位素取代

决定双分子亲核取代反应速率的因素介绍

离去基团的碱性离去基团的碱性越强,其离去能力越弱,反之亦然。离子的碱性随着所在周期的增加而降低。对于卤素离子而言,碘离子的碱性最弱,因此碘离子是一个很好的离去基团;氟离子则相反,氟代烃也因此很难发生SN2反应。碱性F->Cl->Br->I-,离去能力与上述顺序相反。亲核试剂的亲核性亲核性需要与上面的

决定双分子亲核取代反应速率的因素

离去基团的碱性离去基团的碱性越强,其离去能力越弱,反之亦然。离子的碱性随着所在周期的增加而降低。对于卤素离子而言,碘离子的碱性最弱,因此碘离子是一个很好的离去基团;氟离子则相反,氟代烃也因此很难发生SN2反应。碱性F->Cl->Br->I-,离去能力与上述顺序相反。亲核试剂的亲核性亲核性需要与上面的

决定双分子亲核取代反应速率的因素

  1、离去基团的碱性  离去基团的碱性越强,其离去能力越弱,反之亦然。离子的碱性随着所在周期的增加而降低。对于卤素离子而言,碘离子的碱性最弱,因此碘离子是一个很好的离去基团;氟离子则相反,氟代烃也因此很难发生SN2反应。碱性F->Cl->Br->I-,离去能力与上述顺序相反。  2、亲核试剂的亲核

我所揭示微溶剂环境影响亲核取代反应的动力学机制

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202206/t20220627_6466375.html  近日,我所分子反应动力学国家重点实验室傅碧娜研究员、张东辉院士等揭示了微溶剂环境影响亲核取代反应的动力学机制,为理解溶剂效应提供了一个来自原子分子层次的新视角。

羟醛反应的发现与发展历程

  羟醛反应首先由法国人查尔斯·阿道夫·武兹和沙皇俄国人亚历山大·波菲里耶维奇·鲍罗丁于1872年分别独立发现。当时的反应为乙醛在氢氧化钠条件下进行加成反应形成带羟基的醛化合物,羟醛即由此得名。该反应在发现后近一个世纪内一直默默无闻,缺乏应用。由于羟醛反应的产物控制方法学还未出现,交叉羟醛反应总会产